Spark RDD

本文介绍了Spark中的RDD(弹性分布式数据集),包括其特性(弹性、分布式、不可变、分区并行计算),以及常用的API如map、filter、flatMap、reduce等,这些API有助于数据处理和转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是 RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。

➢ 弹性

⚫ 存储的弹性:内存与磁盘的自动切换

⚫ 容错的弹性:数据丢失可以自动恢复

⚫ 计算的弹性:计算出错重试机制

⚫ 分片的弹性:可根据需要重新分片。

➢ 分布式:数据存储在大数据集群不同节点上

➢ 数据集:RDD 封装了计算逻辑,并不保存数据

➢ 数据抽象:RDD 是一个抽象类,需要子类具体实现

➢ 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的 RDD,在

新的 RDD 里面封装计算逻辑

➢ 可分区、并行计算

二、Spark中的RDD(弹性分布式数据集)有以下常用API:

  1. map(func): 对RDD中的每个元素应用给定的函数,并返回一个新的RDD。
      val mapRDD = rdd.map(
        num => {
          // 使用累加器
          sumAcc.add(num)
          num
        }
      )
    
  2. filter(func): 根据给定的函数过滤RDD中的元素,并返回一个新的RDD。
      val orderActionRDD = actionRDD.filter(
        action => {
          val datas = action.split("_")
          datas(8) != "null"
        }
      )
    
  3. flatMap(func): 对RDD中的每个元素应用给定的函数,并将结果扁平化为一个新的RDD。
    val words: RDD[String] = lines.flatMap(_.split(" "))
    
  4. reduce(func): 使用给定的函数将RDD中的所有元素聚合成一个值。
      val wordCount = mapWord.reduce(
        (map1, map2) => {
          map2.foreach {
            case (word, count) => {
              val newCount = map1.getOrElse(word, 0L) + count
              map1.update(word, newCount)
            }
          }
          map1
        }
      )
    
  5. collect(): 将RDD中的所有元素收集到驱动程序节点的数组中。
    mapRDD.collect()
    
  6. count(): 返回RDD中的元素个数。

    val cnt = rdd.count()
    
  7. first(): 返回RDD中的第一个元素。

    val first = rdd.first()
    
  8. take(n): 返回RDD中的前n个元素。

    val ints: Array[Int] = rdd.take(3)
    
  9. takeSample(withReplacement, num, seed): 从RDD中随机抽取样本。

    
    
  10. foreach(func): 对RDD中的每个元素应用给定的函数,但不返回结果。

    rdd.foreach(
     num => {
    // 使用累加器
       sumAcc.add(num)
      }
    )
    
  11. foreachPartition(func): 对RDD中的每个分区应用给定的函数。

      rdd.foreachPartition(iter => {
        val conn = JDBCUtil.getConnection
        iter.foreach {
          case ((day, user, ad), count) => {
    
          }
        }
        conn.close()
      })
    
  12. groupByKey(): 根据键值对RDD中的键进行分组。

    
    
  13. reduceByKey(func): 根据键值对RDD中的键进行聚合。

    
    
  14. aggregateByKey(zeroValue, seqOp, combOp): 根据键值对RDD中的键进行聚合。

    
    
  15. sortBy(keyFunc): 根据给定的键函数对RDD中的元素进行排序。

    
    
  16. sortBy(keyFunc, ascending): 根据给定的键函数和升序标志对RDD中的元素进行排序。

    
    
  17. union(other): 合并两个RDD。

    
    
  18. intersection(other): 计算两个RDD的交集。

    
    
  19. subtract(other): 计算两个RDD的差集。

    
    
  20. distinct(): 去除RDD中的重复元素。

    
    
  21. cartesian(other): 计算两个RDD的笛卡尔积。

    
    
  22. pipe(command): 使用外部命令处理RDD中的数据。

    
    
  23. saveAsTextFile(path): 将RDD保存为文本文件。

    
    
  24. textFile(path): 从文本文件中读取数据并创建RDD。

    
    
  25. parallelize(data): 从集合中创建RDD。

    
    
  26. toDF(): 将RDD转换为DataFrame。

    
    
  27. toDS(): 将RDD转换为Dataset。

    
    

这些API是Spark RDD编程模型中最常用的一些,它们可以帮助你完成数据处理、转换和聚合等任务。

<think>好的,用户想了解Spark RDD的使用和概念。首先我需要回顾一下RDD的基本定义和核心特性。根据引用[3],RDD是弹性分布式数据集的缩写,是Spark对不可变分布式数据集的抽象。这意味着RDD代表一个可以并行操作的元素集合,具有容错性。 接下来,我需要解释RDD的五大特性,包括分区、依赖关系、计算函数、分区器以及优先位置。这些都是RDD的核心概念,用户需要清楚这些特性如何支持容错和高效计算。 然后要讲RDD的创建方式。常见的有从外部数据源加载,比如HDFS或本地文件系统,或者通过转换已有的RDD生成新的RDD。需要举一些例子,比如parallelize方法或者textFile方法。 关于RDD的操作,分为转换(Transformations)和动作(Actions)。转换是惰性的,只有触发动作时才会执行。这里可以举一些常用的转换和动作的例子,如map、filter、reduceByKey,以及collect、count等。同时要注意区分宽依赖和窄依赖,宽依赖会触发shuffle,影响性能。 容错机制方面,RDD通过血统(Lineage)来恢复丢失的分区。每个RDD记录了自己是如何从其他RDD转换而来的,这样在节点失败时可以根据这些信息重新计算丢失的数据,而不需要复制多份数据。 另外,用户可能对RDDSpark生态系统中的位置感兴趣。比如,DStream是Spark Streaming的基础,由一系列RDD组成,如引用[1]和[2]提到的。而结构化流(Structured Streaming)则是基于DataFrame,优化更多,但底层可能还是利用了RDD的特性。 需要提到RDD的适用场景,比如需要低延迟操作、精细控制数据分区,或者使用非结构化数据时。同时也要指出当需要更高级优化时,DataFrame或Dataset可能更合适,如引用[5]提到的转换器和预测器的例子,虽然那更多是ML库的内容,但能说明生态系统的多样性。 最后,生成的相关问题需要覆盖RDD与其他组件的比较,比如DStream和DataFrame,以及优化方法、容错机制和适用场景。这样用户如果有进一步的问题,可以继续深入。</think>### Spark RDD 核心概念与使用详解 #### 一、RDD 基础定义 **弹性分布式数据集(Resilient Distributed Dataset, RDD)** 是 Spark 的底层核心抽象,代表一个**不可变、分区的数据集合**,支持并行操作[^3]。其核心特性可总结为五大要素: - **分区列表**:数据被划分为多个分区(Partition),每个分区在集群节点上分布式存储 - **依赖关系**:记录父 RDD 到子 RDD 的转换关系(窄依赖/宽依赖) - **计算函数**:用于从父 RDD 计算当前分区的函数 - **分区器**:定义数据分布规则(如 HashPartitioner) - **优先位置列表**:标识数据分片的最佳计算位置(数据本地性优化) #### 二、RDD 创建方式 1. **从外部数据源加载**: ```python # 从本地文件创建 rdd = sc.textFile("hdfs://path/to/file.txt") # 从集合创建 rdd = sc.parallelize([1,2,3,4,5]) ``` 2. **通过转换操作生成**: ```python mapped_rdd = rdd.map(lambda x: x*2) filtered_rdd = rdd.filter(lambda x: x>3) ``` #### 三、核心操作类型 | 操作类型 | 特点 | 示例 | |---------|------|------| | **Transformations**(转换) | 惰性执行,生成新 RDD | `map()`, `filter()`, `groupByKey()` | | **Actions**(动作) | 触发实际计算 | `collect()`, `count()`, `saveAsTextFile()` | | **宽依赖操作** | 涉及数据重分布(Shuffle) | `join()`, `reduceByKey()` | #### 四、容错机制 通过**血统(Lineage)**实现容错: $$ \text{RDD}_n = f(\text{RDD}_{n-1}) = f_{n} \circ f_{n-1} \circ \cdots \circ f_1(\text{原始数据}) $$ 当某个分区丢失时,Spark 可根据这个依赖链重新计算该分区[^3]。 #### 五、应用模式示例 ```python # 词频统计经典案例 lines = sc.textFile("hdfs://...") words = lines.flatMap(lambda line: line.split(" ")) pairs = words.map(lambda word: (word, 1)) counts = pairs.reduceByKey(lambda a,b: a+b) counts.saveAsTextFile("hdfs://output") ``` #### 六、与流处理的关联 在 Spark Streaming 中,DStream 本质上是**时间维度上的 RDD 序列**: $$ \text{DStream} = \{ \text{RDD}_t \mid t \in \text{时间窗口} \} $$ 每个微批处理实际上是对 RDD 的操作[^1][^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值