加载模型报错Missing key(s) in state_dict:

本文详细介绍了在深度学习模型训练中,如何正确加载模型参数。错误情况1是尝试将checkpoint_2的参数加载到model_1,导致 Unexpectedkey(s)instate_dict 错误,因model_2有额外参数。错误情况2是使用checkpoint_1的参数加载到model_2,会出现 Missingkey(s)instate_dict 错误,因model_2比model_1多参数。解决方法是确保模型结构与加载的参数匹配,例如使用model_2加载checkpoint_2的参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引用

说明:比如我们之前定义的一个模型model_1,训练之后保存了模型参数,命名为checkpoint_1;然后我们在model_1的基础上修改了模型,在内部添加了一些新的参数(或者更改了参数的名称),命名为model_2,训练之后保存了模型参数,命名为checkpoint_2。
一般而言,我们在测试时,使用的模型model,要加载相应的模型参数信息,即checkpoint。
1,如果我们使用的模型是model_1,而加载的模型参数是checkpoint_2,这时可能会出现Unexpected key(s) in state_dict: …这类错误。因为checkpoint_2内保存的模型参数是model_2的参数,而model_2是在model_1的基础上添加了一些参数,我们把模型参数checkpoint_2加载到模型model_1上,就会多出一些不能匹配的参数。
2,如果我们使用的模型是model_2,而加载的模型参数是checkpoint_1,这时可能会出现Missing key(s) in state_dict: …这类错误。因为checkpoint_1内保存的模型参数是model_1的参数,而model_1要比model_2内部少一些参数,我们把模型参数checkpoint_1加载到模型model_2上,就会出现缺少参数这类错误。
3,如果是更改了model中参数的名称,可能会同时出现上述两种错误。如上述代码中所显示错误!

我遇到的问题是:
RuntimeError: Error(s) in loading state_dict for BertModel:
Missing key(s) in state_dict: “embeddings.position_ids”.
解决方法:
self.bert.load_state_dict(ckpt[“bert-base”], False)

<think>嗯,用户遇到了一个关于PyTorch模型状态字典的问题,具体是“Missing key(s) in state_dict: 'log_std'”和“Unexpected key(s) in state_dict: 'std'”。我需要仔细分析这个问题,并给出解决方案。 首先,这个问题通常发生在加载预训练模型时,模型的参数名称不匹配。用户可能在保存模型的时候使用了不同的参数名,导致加载时找不到对应的键。例如,保存的模型有一个参数叫'std',但加载模型期望的是'log_std'。这时候,PyTorch就会提示缺少'log_std',而多出了'std'。 接下来,我需要考虑可能的原因。最常见的原因是模型结构在保存和加载时不一致。可能用户在训练时使用了自定义的层或参数名,而在加载模型结构发生了变化,或者加载模型的代码没有正确对应保存时的结构。此外,用户可能在保存模型时修改了参数名称,例如将'log_std'保存为'std',或者相反。 然后,解决方案部分。首先,应该检查模型的结构,确保保存和加载时的模型定义一致。如果参数只是名称不同,可以通过重命名键来解决。例如,将'std'改为'log_std'。这可以通过遍历state_dict并修改键名来实现。另外,如果用户使用的是别人的预训练模型,可能需要查看文档,确认是否有参数名的变化。最后,在加载模型时,使用strict=False参数可以忽略不匹配的键,但需要注意这可能导致模型性能问题,因为部分参数未被加载。 我还需要考虑用户可能的背景。他们可能对PyTorch有一定了解,但在处理模型保存和加载时遇到了困难。可能需要具体的代码示例来帮助理解如何重命名键。同时,提醒用户注意使用strict=False的风险,避免潜在的错误。 最后,总结问题,强调检查模型结构一致性和参数名匹配的重要性,并提供两种解决方案:修改键名或使用非严格加载。确保回答清晰,步骤明确,帮助用户逐步解决问题。</think>这个问题通常出现在PyTorch模型参数加载过程中,涉及模型`state_dict`的键名不匹配。以下是逐步分析及解决方案: --- ### **问题本质** ```python Missing key(s) in state_dict: "log_std" Unexpected key(s) in state_dict: "std" ``` - **直接原因**:加载模型参数文件(`state_dict`)中存在名为`std`的参数,但当前模型期望的参数名为`log_std`。 - **技术背景**:PyTorch通过`state_dict`的键名严格匹配参数。若模型定义(`__init__()`)与参数文件中的键名不一致,就会触发此错误。 --- ### **常见场景** 1. **自定义模型改动** 修改了模型的参数命名(如将`log_std`重命名为`std`),但未同步更新预训练参数文件。 2. **第三方模型加载** 尝试加载他人训练的模型时,对方模型定义与你本地代码不一致。 3. **版本兼容性问题** 框架或库版本更新导致参数命名规则变化。 --- ### **解决方案** #### 方法1:重命名键名(推荐) 修改`state_dict`中的键名以匹配当前模型定义: ```python import torch # 加载原始参数文件 checkpoint = torch.load("model.pth") # 重命名键:将 "std" 改为 "log_std" new_checkpoint = {} for key, value in checkpoint.items(): new_key = key.replace("std", "log_std") new_checkpoint[new_key] = value # 加载修改后的参数到模型 model.load_state_dict(new_checkpoint, strict=True) ``` #### 方法2:非严格模式加载 允许忽略不匹配的键名(需谨慎): ```python model.load_state_dict(checkpoint, strict=False) ``` - ✅ 优点:快速绕过错误 - ❌ 缺点:可能导致部分参数未加载,影响模型性能 --- ### **验证步骤** 1. **检查模型定义** 确认模型中是否存在`log_std`参数(如策略梯度算法中的对数标准差)。 2. **对比键名列表** ```python print("Model expects keys:", model.state_dict().keys()) print("Checkpoint has keys:", checkpoint.keys()) ``` 3. **参数映射分析** 若存在多个不匹配键名,需系统性修复(如批量替换`old_key`→`new_key`)。 --- ### **预防措施** 1. **保持命名一致性** 在模型训练和加载过程中使用相同的参数命名规范。 2. **版本控制** 对模型定义和参数文件进行版本标记(如Git标签)。 3. **导出参数前验证** ```python torch.save(model.state_dict(), "model.pth") # 保存前确保参数名正确 ``` --- ### **扩展知识** - `state_dict`是PyTorch模型的核心属性,存储所有可学习参数(权重、偏置等)的键值对。 - 若遇到更复杂的键名不匹配问题,可使用`collections.OrderedDict`重构参数字典。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值