The Learning route of GNN

本文介绍了图神经网络(GNN)的学习路线,包括图的类型、池化方法、分析和效率等方面的理论知识,以及在物理学、化学与生物学、知识图谱、推荐系统等多个领域的应用。还列举了GNN的经典课程、书籍、论文资源,帮助读者系统地学习和理解图神经网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Learning route of GNN

CHEN JIE

Note:图神经网络的相关实战教程及其缺乏,如有看到相关内容,可以添加到群在线文档之中。

  1. 图神经网络基础知识

    • 台大李宏毅的GNN课(很通俗易懂,较为推荐)

      链接:(1/2) https://www.youtube.com/watch?v=eybCCtNKwzA&ab_channel=Hung-yiLee

      ​ (2/2)https://www.youtube.com/watch?v=M9ht8vsVEw8&t=110s&ab_channel=Hung-yiLee

    • Stanford CS224W (这课最为经典,目前似乎只有英文版)
      链接:https://www.youtube.com/playlist?list=PL-Y8zK4dwCrQyASidb2mjj_itW2-YYx6-

    • 刘知远的书《Introduction to Graph Neural Networks》
      链接:http://nlp.csai.tsinghua.edu.cn/~lzy/books/gnn_2020.html

    Note:以上资料主要内容主要设计现存的图神经网络模型GCN等,已经相对来说成熟,缺乏在实际领域的应用。

  2. 论文部分

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SimonChenHere

打赏奖励,以资鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值