结论证明
limx→a+(x−a)pf(x)=A可写成limx→a+f(x)(x−a)p=A\lim_{x\to a^+} (x-a)^pf(x)=A可写成
\lim_{x\to a^+}\frac{f(x)}{(x-a)^p}=Ax→a+lim(x−a)pf(x)=A可写成x→a+lim(x−a)pf(x)=A
然后看下图 因为红线在黑线的上方,所以红线与xOy轴围成的面积更大。 如果黑线代表的函数是发散的,那红线必然发散; 如果红线代表的函数是收敛的,那黑线必然收敛
对于∫ab(x−a)−pdx=11−p(x−a)1−p∣ab\int_{a}^{b}(x-a)^{-p} dx=\frac{1}{1-p}(x-a)^{1-p} |_a^b∫ab(x−a)−pdx=1−p1(x−a)1−p∣ab
①当0<p<10<p<10<p<1时,∫ab(x−a)−pdx\int_{a}^{b}(x-a)^{-p} dx∫ab(x−a)−pdx收敛,而上述公式里的A当0<p<10<p<10<p<1时,0≤A<+∞0 \leq A<+\infty0≤A<+∞,也就是说A是个有限数。 所以∫abf(x)dx\int_a^bf(x)dx∫abf(x)dx也收敛
②当p≥1p\geq1p≥1时,∫ab(x−a)−pdx\int_{a}^{b}(x-a)^{-p} dx∫ab(x−a)−pdx发散,而A>0,说明∫abf(x)dx\int_a^bf(x)dx∫abf(x)dx和∫ab(x−a)−pdx\int_{a}^{b}(x-a)^{-p} dx∫ab(x−a)−pdx同数量级大小,或者∫ab(x−a)−pdx\int_{a}^{b}(x-a)^{-p} dx∫ab(x−a)−pdx是比∫ab(x−a)−pdx\int_{a}^{b}(x-a)^{-p} dx∫ab(x−a)−pdx更大的数量级