
keras
文章平均质量分 76
我是一个对称矩阵
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Keras网络结构可视化
1. Keras中提供了可视化的Tool,将网络结构保存为图片即可查看2. 加载模型打印可视化结构from keras.models import load_model #用于加载模型from keras.utils import plot_model # 用于可视化model_path="D:/FacialExpressionInteraction/face_classification-master/trained_models/fer2013_mini_XCEPTION.119-0.65.原创 2021-04-15 13:43:44 · 1288 阅读 · 0 评论 -
TensorFlow Lite(Keras的.H5模型)
1.使用tensorflow提供的API完成转换转换前模型:keras的.h5模型转换后模型:.tflite模型相关环境:windows10numpy 1.19.5tensorflow 2.4.1转换代码如下:import tensorflow as tfmodel=load_model("../models/emotion.h5") # 加载h5模型converter =tf.lite.TFLiteConverter.from_keras_model(原创 2021-03-30 19:00:01 · 2407 阅读 · 0 评论 -
Keras精度验证
当我们得到一个模型时,我们想要测试一下该模型的精度,则可以使用Keras的evaluate_generator方法来实现,关于该方法的一些介绍可参考evaluate_generator,该方法来自Model类.evaluate_generator使用生成器来传入样本eva_image_path目录结构如下:– FER2013Test----0----1----2----3----4----5----6示例代码from keras.models import load_mo.原创 2021-03-29 12:39:33 · 546 阅读 · 0 评论 -
五种卷积神经网络解决猫狗分类问题(五):V5 预训练-微调模型
版本描述epochs训练精度验证精度V1.0简单线性卷积神经网络3099%75%V2.0添加了数据增强和dropout层10083%83%V3.0使用预训练-特征提取-分步式3099%90%V4.0使用预训练-特征提取-合并式3090%90%V5.0使用预训练-微调模型3080%80%1. 微调模型相对于特征提取冻结所有卷积基,微调模型则是冻结部分卷积基,剩余卷积基层和自定义分类器联合训练一般分为卷积基和...原创 2021-02-08 15:38:10 · 1021 阅读 · 0 评论 -
五种卷积神经网络解决猫狗分类问题(四):V4 预训练-特征提取-合并式
1. 预训练网络关于预训练网络可看上一篇文章:五种卷积神经网络解决猫狗分类问题(三):预训练-特征提取-分步式2. 合并式我们将数据输入整个网络(卷积基+新分类器),而不再像分步式那样保存中间结果再训练单独分类器。合并式是对整个网络进行训练,只不过在反向传播更新权值时只更新新分类器,而不更新卷积基。3. 代码3.1 导入预训练网络设置导入的卷积基不可被训练,从而保护其在训练时不被更新from keras.applications import VGG16from keras import原创 2021-02-08 15:18:34 · 538 阅读 · 2 评论 -
五种卷积神经网络解决猫狗分类问题(二):V2 简单线性网络上添加数据增强和dropout层
五种卷积神经网络解决猫狗分类问题(零):总概要五种卷积神经网络解决猫狗分类问题(一):V1 简单线性网络1. 介绍使用keras搭建简单线性网络,添加数据增强和一层dropout层,在猫狗数据集上训练,最终得到83%的训练精度和83%验证集精度,然后训练集精度相比V1的99%下降了,但是验证集精度相比于V1的75%上升了。2. 数据增强在V1中我们使用了keras的ImageDataGenerator来实现批量数据输入,实际上ImageDataGenerator中可以设置这些批量数据的旋转、平移、原创 2021-02-08 15:01:52 · 705 阅读 · 0 评论 -
五种卷积神经网络解决猫狗分类问题(一):V1 简单线性网络
五种卷积神经网络解决猫狗分类问题(零):总概要五种卷积神经网络解决猫狗分类问题(一):V1 简单线性网络1. 介绍使用keras搭建简单线性网络。再猫狗数据集上训练,最终得到99%的训练精度和75%验证集精度,显然我们是想要验证集精度,但是75%不尽人意,不过我们也先来看看该方法。2. 网络结构网络通过卷积层、最大池化层和密集层搭建,网络结构如下:3. 数据集数据集是kaggle上的数据集,配合使用了数据生成器关于数据生成器主要使用了keras的ImageDataGenerator类,关于原创 2021-02-08 14:33:37 · 1020 阅读 · 0 评论 -
五种卷积神经网络解决猫狗分类问题(零):总概要
1. 介绍在《python深度学习》(弗朗索瓦·肖莱著)这本书中,针对猫狗分类问题,使用kaggle上的猫狗分类数据集的部分数据,作者使用五种卷积神经网络(使用相同的数据集训练和测试)方法来提高网络精度,在这里我使用V1~V5来表示(因为随着版本更新,精度也在不断增加):版本描述epochs训练精度验证精度V1.0简单线性卷积神经网络3099%75%V2.0添加了数据增强和dropout层10083%83%V3.0使用预训练-特征提取-分步式30原创 2021-02-08 14:10:01 · 1405 阅读 · 1 评论 -
五种卷积神经网络解决猫狗分类问题(三):V3 预训练-特征提取-分步式
0.预训练模型方法总览1.特征提取1.1卷积基和密集层分离式1.2卷积基和密集层合并式2.微调模型1. 预训练网络预训练网络是一个保存好的网络,之前已经在大型数据集上训练好。如果这个原始数据足够大且足够通用,那么预训练网络学到的特征的空间层次结构可以有效地作为视觉世界的通用模型,因此这些特征可用于各种不同的计算机视觉问题。比如在ImageNet上训练了一个网络(其类别主要是动物和日常用品),然后将这个训练好的网络应用于某个不相干的任务(比如图像中识别家具)。这种学到的特征在原创 2021-02-04 14:05:28 · 1505 阅读 · 1 评论 -
cats&dogs分类
1. 描述总述数据集:kaggle的猫狗数据集网络:自定义神经卷积网络防过拟合措施:图像增强和dropout层开发工具:jupyter+python+keras数据集说明原始猫狗数据集包含了25000张图像(猫狗各12500张),我们这里不适用全部数据集,我们将原始train中的cats中0~1000张图定义为training,1000-1500张定义为validation,1500-2000张定义为test;dogs同理这里给出网络结构:2. 从原始数据集中的train分原创 2021-02-02 13:26:53 · 571 阅读 · 0 评论 -
训练集(training)、验证集(validation)和测试集(test)
0.什么是训练集、验证集和测试集?训练集(train):训练模型验证集(val):评估模型测试集(test):一旦找到了最佳参数,就开始最终训练使用训练集训练多个网络模型,再使用验证集测试这些网络,找到得分最高的那个网络作为我们选择的最佳网络,再将训练集和验证集合并,重新训练这个最佳网络,得到最佳网络参数。打个比方:我们现在有个任务,但是解决这个任务的网络有网络A、网络B和网络C,如何找到效果最好的哪个?先拿train对三个网络都进行训练(用相同的train训练三个网络),然后用vali.原创 2021-02-02 12:04:59 · 21041 阅读 · 0 评论