
图像处理初学者应该学习的100个问题-你都学会了吗?
文章平均质量分 80
来自:https://github.com/gzr2017/ImageProcessing100Wen/tree/master/Question_01_10
我是一个对称矩阵
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像仿射变换
文章目录1. 引用2. 什么是仿射变换?3. 定义4. 常用的转换矩阵5.实际应用5.1 栗子15.2 栗子21. 引用opencv学习(三十五)之仿射变换warpAffine2. 什么是仿射变换?3. 定义向量空间中进行一次线性变换(乘以一个矩阵A)再加上一个平移(加上一个向量B)。现定义参数A,B和AB的组合M(固定尺寸2*3):定义自变量(起始量):则X → T 的仿射变换过程可以表达式为:或者:得到结果T:其实可以看出,矩阵M中a决定缩放旋转等性质,b决定平移性质。原创 2021-07-20 18:29:09 · 3732 阅读 · 1 评论 -
图像方法之内插法
这里写目录标题0. 图像内插1. 最邻近内插法2. 双线性内插3. 双三次内插0. 图像内插用已知数据来估计未知位置的数值的处理。放大、收缩、旋转和几何校正等任务。(放大图像像素增加)。当我们拥有一张500500的图片,电脑上放大到10001000的区域时,会发现很多屏幕点是没有值的,需要用值来填充,那么填充过程就是内插,常见有以下方法:最邻近内插法双线性内插法双三次内插1. 最邻近内插法图片本身包含了像素,但是不足以填埋展示区域,所有我们需要填充这些空白屏幕点。最邻近内插是看空白的屏幕原创 2021-07-13 19:06:07 · 3231 阅读 · 1 评论 -
Question_21_30
目录Question:模板tips:关于直方图的几个操作解释(仅供参考)Question21:直方图归一化(Histogram Normalization)Question:模板这是一个Question的模块框架代码:print("这是一个Question的模块框架")tips:关于直方图的几个操作解释(仅供参考)Question21:直方图归一化(Histogram Normalization)将直方图所有分量限制在一定范围。虽然有0 ~ 255共256个分级,但是一些图片实际上只分布在原创 2021-07-13 17:02:26 · 769 阅读 · 0 评论 -
Question_11_20
目录Question:模板Question11:均值滤波Question12:Motion FilterQuestion13:MAX-MIN滤波器Question14:差分滤波器Question15:Sobel滤波器Question16:Prewitt滤波器Question:模板这是一个Question的模块框架代码:print("这是一个Question的模块框架")Question11:均值滤波均值滤波就是将区域内像素值的均值代替新的中央像素的值(实际上高斯滤波是一种带权值的均值滤波,规定原创 2021-07-07 19:02:17 · 193 阅读 · 0 评论 -
卷积核(又称滤波器)
0. 前言虽然卷积核或者滤波器所指的是同一个东西,但是在传统图像处理一般叫滤波器,而在深度学习中叫卷积核。1. 卷积(滤波)卷积实际上是一种运算方式,可以理解为和加减乘除一样的运算方式,只不过更加复杂一点而已。一言以蔽之就是:两个矩阵对应位相乘,然后所有积求和step1:对应位相乘对应位相乘求积1*-1-10*002*115*-1-54*00……step2:然后所有积求和sum=-1+0+1+5+0+…=0我们将中间3原创 2021-07-05 15:36:46 · 13769 阅读 · 2 评论 -
大津二值化算法(Otsu)
1. 简介我们在最灰度图做二值化时,需要设定一个分割阈值,我们并没有一个万能的阈值。而Otsu大津算法则是根据灰度图本身的信息,自动确定最佳阈值,实现以最佳阈值对灰度图进行二值化。需要注意的是,大津算法并不是直接进行二值化处理,而是得到一个整型数字,也即阈值,我们得到阈值再进行二值化。2. 原理我们对图片进行二值化时,是希望将图片分割成两部分,暂且称之为前景和背景:一般情况下,我们将我们感兴趣的部分称为前景,比如图中的人;对于不感兴趣的称为背景。大津算法的思想是比较简单的,我们认为分为的前景和原创 2021-06-01 00:43:06 · 7014 阅读 · 0 评论 -
彩色图、灰度图和二值图
首先计算机中图像是用矩阵存储的,所以在分析图像时,应当用矩阵的眼光来看待1.RGB模式(百万种颜色)2.CMYK模式(四种印刷色)3.索引模式(256种颜色)4.灰度模式(256级灰度)5.位图模式(二值图,2种颜色)目录彩色图像*RGB**CMYK**HSL色彩模式(与YUV相似)**Lab模式**索引图*灰度图二值图彩色图像上述中RGB、CMYK和索引模式都是来表示彩色图的。RGBRGB模式:基于发光体(电子产品)的色彩模式,常见的24bit色彩大概是1678万种,也就是常见的原创 2021-05-31 23:48:52 · 5223 阅读 · 2 评论 -
Question_01_10
本文整理来自Github项目:ImageProcessing100Wen源项目包含python代码和C++代码,本文代码仅含python,需要的可根据序号去源作者项目中获取python略熟,所以加了一些注释python 中显示图片的代码(自行添加调试):cv2.imwrite("out.jpg", out) # 保存图像out为out.jpg,若不需要保存则可去掉cv2.imshow("result", out) # 显示图像out,并给该显示窗口命名为resultcv2.wai.原创 2021-05-31 23:06:35 · 312 阅读 · 0 评论