PaddleSeg解决问题:ValueError: setting an array element with a sequence. The requested array has an inhom

在使用PaddleSeg官方提供的模板进行模型剪枝训练时,用户遇到了ValueError,源于metrics.py文件中计算精度部分的数组转换问题。修正了形状不一致导致的代码后,可以正常进行剪枝训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》


在这里插入图片描述

一、问题

在使用PaddleSeg官网提供的源码包进行模版剪枝训练时遇到问题:ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part.

PaddleSeg模型剪枝的官网教程链接为:添加链接描述
在这里插入图片描述

二、解决办法

出错地方在metrics.py 218行处,如下,在这个for循环中主要是计算了各类别的精度和召回率,在计算精度后进行转换为数组时出了问题,列表元素需要统一为一类才能使用gnp.array()转换成功为数组:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

修改上面一行代码就可以解决该问题,再运行代码就可以正常剪枝训练了。

三、总结

已经就是PaddleSeg中解决问题:ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part.的方法,希望能帮到你!

感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖

关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

### 解决 YOLOACT 训练过程中的 `ValueError` 错误 当在YOLOACT训练过程中遇到`ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions.`错误时,这通常意味着尝试设置数组元素的数据结构不一致或形状不匹配。此问题可能源于输入数据预处理不当、模型配置文件设定有误或是框架内部实现细节引发。 对于此类错误,在PaddleSeg中采取的措施可以提供一定借鉴[^1]。具体而言: - **检查输入数据的一致性**:确保所有用于训练的数据样本具有相同的维度和格式。任何差异都可能导致上述异常抛出。 - **验证标注框坐标范围合理性**:如果涉及到目标检测任务,则需确认边界框坐标的取值合理合法,不存在超出图像尺寸的情况。例如,在某些情况下,由于标签文件生成逻辑缺陷或其他原因造成bbox越界,进而影响后续操作并最终触发该类异常[^3]。 - **审查自定义层或损失函数设计**:倘若项目中有引入额外组件(比如特定类型的神经网络层),务必仔细审视这部分代码是否存在潜在风险点;特别是那些涉及张量拼接/切片的地方容易埋下隐患[^4]。 针对YOLOACT的具体场景,建议重点排查以下几个方面来定位并修复问题所在: #### 数据增强阶段可能出现的问题 ```python import numpy as np def check_data_consistency(image, bboxes): """ 检查单个图片及其对应的真实框是否满足条件 参数: image (np.ndarray): 图像数据. bboxes (list of lists or tuples): 边界框列表. 返回: bool: 如果数据有效返回True; 否则False. """ try: assert isinstance(bboxes, list), "Bounding boxes should be provided as a list" for bbox in bboxes: x_min, y_min, w, h = map(int, bbox[:4]) # 验证边界框位于图像范围内 height, width = image.shape[:2] if not all([0 <= val < dim for val, dim in zip((x_min, y_min, x_min+w, y_min+h), (*image.shape[:2],)*2)]): return False return True except Exception as e: print(f"Data validation failed due to {e}") return False ``` 通过这段辅助函数可以在每次迭代前快速筛查掉不符合预期的数据条目,从而减少因脏数据引起的意外状况发生概率。 另外值得注意的是,尽管不同深度学习库之间存在语法层面的区别,但在面对相似的技术难题时往往能够相互启发找到有效的应对策略[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值