先决条件:自己安装好pycharm和anaconda,Nvidia显卡驱动
步骤:
- 从NVIDIA控制面板查看CUDA版本
- 在桌面右键,点击NVIDIA控制面板
- 点击系统信息
- 点击组件,查看CUDA版本
- 去英伟达官网,下载合适的CUDA版本
CUDA版本下载
对于上图的第四点这里说一下:
network:网络安装包,安装包较小,需要在主机内联网下载实际的安装包。
local:本地安装包。安装包较大,包含每一个下载安装组件的安装包。
一般下载local。
3.安装CUDA
点击下载的exe文件即可,选择要安装的位置。
- 查看·电脑的系统变量
- 验证CUDA是否安装成功
nvcc -V
- 安装 CUDNN
安装CUDNN时,要先注册登录,不然进不去下面的网页
安装 CUDNN
- 解压 CUDNN
- 复制 CUDNN 中的 lib、include、bin 至 C:\Program Files\NVIDIA\NVIDIA GPU Computing Toolkit\CUDA\v10.2
- 安装 PyTorch
- 打开Anaconda prompt 创建环境;
conda create -n pytorch_gpu python==3.7 - 进入创建好的环境;
conda activate pytorch_gpu - 开始安装 PyTotch1.31
首先为了下载较快,先设置清华镜像:
conda config --set show_channel_urls yes
在执行完成后会在你的用户目录下生成一个.condarc 的文件(一般在C:\Users\你的用户名),编辑修改文件内容为:
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
- 打开下面的网页,并复制运行箭头的语句
复制运行
- 验证 PyTorch 安装是否成功
import torch
x = torch.rand(5,5)
print(x)
8. 验证 GPU 是否可以使用
torch.cuda.is_available()
输出True即可。