windows,pychram,python3.7安装pytorch1.5.1(GPU版本从零开始)

本文详细介绍了如何在装有NVIDIA显卡的计算机上安装CUDA和CUDNN,以及如何通过Anaconda创建环境并安装PyTorch,确保GPU能够被PyTorch正确识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先决条件:自己安装好pycharm和anaconda,Nvidia显卡驱动
步骤:

  1. 从NVIDIA控制面板查看CUDA版本
  • 在桌面右键,点击NVIDIA控制面板
    在这里插入图片描述
  • 点击系统信息
    在这里插入图片描述
  • 点击组件,查看CUDA版本
    在这里插入图片描述
  1. 去英伟达官网,下载合适的CUDA版本
    CUDA版本下载
    在这里插入图片描述
    对于上图的第四点这里说一下:
    network:网络安装包,安装包较小,需要在主机内联网下载实际的安装包。
    local:本地安装包。安装包较大,包含每一个下载安装组件的安装包。
    一般下载local。
    3.安装CUDA
    点击下载的exe文件即可,选择要安装的位置。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  2. 查看·电脑的系统变量
    在这里插入图片描述
  3. 验证CUDA是否安装成功
    nvcc -V
    在这里插入图片描述
  4. 安装 CUDNN
    安装CUDNN时,要先注册登录,不然进不去下面的网页
    安装 CUDNN
    在这里插入图片描述
  • 解压 CUDNN
  • 复制 CUDNN 中的 lib、include、bin 至 C:\Program Files\NVIDIA\NVIDIA GPU Computing Toolkit\CUDA\v10.2
  1. 安装 PyTorch
  • 打开Anaconda prompt 创建环境;
    conda create -n pytorch_gpu python==3.7
  • 进入创建好的环境;
    conda activate pytorch_gpu
  • 开始安装 PyTotch1.31
    首先为了下载较快,先设置清华镜像:
    conda config --set show_channel_urls yes
    在执行完成后会在你的用户目录下生成一个.condarc 的文件(一般在C:\Users\你的用户名),编辑修改文件内容为:
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  • 打开下面的网页,并复制运行箭头的语句
    复制运行
    在这里插入图片描述
  1. 验证 PyTorch 安装是否成功
import torch

x = torch.rand(5,5)

print(x)

在这里插入图片描述
8. 验证 GPU 是否可以使用
torch.cuda.is_available()
在这里插入图片描述
输出True即可。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值