
目标检测
文章平均质量分 56
学习目标检测的一些总结
易水潇潇666
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
弱监督目标检测与半监督目标检测
一、监督学习分类根据数据集的标注情况,分为:监督学习、弱监督学习、弱半监督学习和半监督学习。监督学习:数据集为带实例级标注的标签,包含坐标和类别信息弱监督学习:数据集仅带有数据类别的标签,不包含坐标信息弱半监督学习:数据集中包含少量实例级标注图像,大量数据分类级标注图像,模型期望通过大规模的弱标注数据提升模型的检测能力。半监督学习:数据集中包含少量实例级标注图像,大量未标注图像,模型期望通过大规模的未标注数据提升模型的检测能力。二、弱监督目标检测(Weakly Supervise原创 2022-01-09 23:12:57 · 7889 阅读 · 0 评论 -
【目标检测】yolov5与yolox对比
yolov5 yolox-DarkNet53 yolox-SPP 输入端 Mosaic 自适应锚框计算 自适应图片放缩 Mosaic MixUp (注:epoch=15时这两种数据增强方式关闭,由于这种增强效果更好,ImageNet的预训练无意义) 增加了EMA权值更新 Cosine学习率机制 增加了RandomHorizantalFlip,ColorJitter,多尺度数据增...原创 2021-11-29 22:08:27 · 20381 阅读 · 0 评论 -
【目标检测】yoloX算法详解
一、yoloX的改进由于yoloV4和yoloV5存在过度优化的问题,因此yoloX以yoloV3和Darknet 53为基线,采用了Darknet 53骨干网的结构架构和SPP层,改变了一些训练策略:增加了EMA权重更新、consine lr schedule、IoU损失和IoU感知分支,使用BCE Loss训练cls和obj,IoU Loss作为test分支。由于RandomResizedCrop和马赛克增强重叠,因此只采用了RandomHorizontalFlip,ColorJitter、mu原创 2021-11-26 21:55:27 · 19851 阅读 · 4 评论 -
【目标检测】yoloV5算法详解
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nns二、yoloV5结构框架CBL:CBL模块是由Conv+BN+Leaky_relu激活函数组成Res unit:借鉴ResNet中的残差结构,用来构建深层网络,CBM是原创 2021-11-23 23:07:28 · 22174 阅读 · 2 评论 -
【目标检测--tricks】FPN和PAN
一、FPN结构FPN结构图:FPN通过利用常规CNN模型内部从底至上各个层对同一scale图片不同维度的特征表达结构,提出了一种克有效在单一图片视图下生成对其的多维度特征表达的方式。它可以有效地赋能常规CNN模型,从而可以生成出表达能力更强地feature maps以供下一阶段计算机视觉任务(如object detection/semantic segmentation等)来使用。本质上说它是一种加强主干网络CNN特征表达的方法。二、PAN结构PAN即PANet,结构图如下:简答来说,就是在FPN原创 2021-11-22 22:43:54 · 11122 阅读 · 6 评论 -
YOLO V3算法思想
一、YOLO模型的发展:YOLO各版本对应的输入输出:版本输入输出YOLO V1448 X 448 X37 X 7 X 30YOLO V2416 X 416 X 313 X 13 X 5 X 25YOLO V3416 X 416 X 313 X 13 X 255、26 X 26 X 255、52 X 52 X 255注:在YOLO V2输出中,1313表示网格数,5表述先验框个数,25表示类别数20(VOC 20类对象)+ 边框坐标4 + 边框置信度1原创 2021-10-25 20:21:26 · 295 阅读 · 0 评论 -
目标检测算法的分类
基于深度学习的目标检测算法可分为:One stage和Two stage两周:1、Two stage:先进行区域生成,该区域称之为region proposal(简称RP,一个有可能包含待检物体的预选框),再通过卷积神经网络进行样本分类。任务流程:特征提取 --> 生成RP --> 分类/定位回归。常见tow stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。2、One Stage不用RP,直接在网络中提取特征来预测物原创 2021-10-13 14:05:36 · 1680 阅读 · 0 评论 -
目标检测--mask R_CNN
与faster R_CNN相比,mask R_CNN是用RoiAlign代替了Roi Pooling,在最后计算loss时增加了FCN(mask)层。原创 2021-09-12 15:07:29 · 514 阅读 · 0 评论 -
目标检测--Faster R_CNN
1、faster R_CNN流程步骤1)将图像输入网络得到相应的特征图2)使用RPN结构生成候选框,将RPN生成的候选框投影到特征图上得到相应的特征矩阵3)将每个矩阵通过ROI pooling层放缩到7x7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果。2、RPNcls layer预测的是前景和背景的概率,reg layer预测的是中心点的x,y以及w,h。对于特征图上的每个3x3的滑动窗口,计算出滑动窗口中心点对应原始图像上的中心点,计算出k个anchor box(注意和prop原创 2021-09-05 12:32:15 · 199 阅读 · 0 评论 -
目标检测--Fast R_CNN
Fast R_CNNFast R_CNN算法流程可分为3个步骤:1)一张图生成1k~2k个候选框(使用Selective Search方法)2)将图像输入网络得到响应的特征图,将SS算法生成的候选框投影到特征图上获得响应的特征矩阵3)将每个特征矩阵通过ROI pooling层缩放到7x7大小的特征图,接着将特征图展平,通过一系列全连接层得到预测结果。注:ROI(Region of Interset)1、一次性计算整张图像特征R_CNN:依次将候选框区域输入卷积神经网络得到特征Fast R_CN原创 2021-09-04 17:02:45 · 224 阅读 · 0 评论 -
目标检测--R_CNN
R_CNNR_CNN算法流程步骤:1)一张图像生成1K~2K个候选区域(Selective Search方法)2)对每个候选区域,使用深度网络提取特征3)特征送入每一类的SVM分类器,判断是否属于该类4)使用回归器精细修正候选框位置1、候选区域的生成利用Selective Search算法通过图像分割的方法得到一些原始区域,然后使用一些合并策略将这些区域合并,得到一个层次化的区域结构,而这些结构就包含这可能需要的物体。2、对每个候选区域,使用深度网络提取特征将2000候选框缩放到227x2原创 2021-09-04 15:05:56 · 137 阅读 · 0 评论 -
mmdetection之初体验
修改了mmdetection中demo/wencam_demo.py,做个一个检测视频的小实验代码及分析如下:import argparseimport osimport cv2import torchfrom mmdet.apis import inference_detector, init_detector# 获取当前文件的路径file_path = __file__# dirname(file_path)表示获取file_path的父路径dir_path = os.path原创 2021-08-25 21:02:58 · 251 阅读 · 0 评论 -
mmdetection的安装
文档链接:链接install核心:保证cuda、pytorch、mmcv和mmdetection的版本互相一致步骤:1、查看cuda版本nvcc -V2、创建新的虚拟环境,准备pytorchconda create -n open-mmlab python=3.7 -yconda activate open-mmlab# 安装对应cuda版本的pytorch# https://pytorch.org/get-started/previous-versions/conda install原创 2021-08-20 16:44:51 · 385 阅读 · 0 评论