- 博客(138)
- 资源 (29)
- 收藏
- 关注
原创 2025年高教社杯全国大学生数学建模竞赛ABCDE题思路解析+代码+论文
2025年高教社杯全国大学生数学建模竞赛ABCDE题思路解析+代码+论文
2025-09-03 01:57:40
1062
原创 2025年有哪些实惠好用的流量卡套餐推荐?(热门套餐详解)
【超值流量卡推荐】2025年大流量需求激增,但线下套餐贵、线上套路多。作者8年玩卡经验,精选四大运营商正规流量卡,亲自测试确保无套路、网速快、售后无忧。新老卡可搭配使用,归属地不影响体验,套餐流量与描述一致。部分优惠套餐随时可能停办,建议尽快免费申请。附申请链接,享受高性价比流量服务。
2025-09-01 02:36:30
6240
原创 深度剖析PyTorch分布式训练:从原理到工程实践
PyTorch分布式训练核心技术解析 本文深入剖析PyTorch分布式训练的核心架构与实现原理。主要内容包括:1)分布式训练架构演进,从参数服务器到现代混合分片技术;2)AllReduce算法数学原理及工程实现,包括RingAllReduce的Scatter-Reduce和AllGather两阶段通信;3)ZeRO优化器的三级参数分片策略;4)生产级分布式训练模板,涵盖进程组初始化、DDP模型并行、分布式采样等关键环节;5)典型陷阱与优化方案,如死锁预防、内存管理、通信计算比平衡等;6)前沿技术包括MoE专
2025-08-18 20:52:08
738
1
原创 AI大模型实战:用自然语言处理技术高效处理日常琐事
摘要:本文介绍了如何利用大语言模型(如GPT-4)自动化处理日常琐事的三个实用案例。案例一展示了500人名单的清洗、拼音排序及Excel导出;案例二演示了会议记录的自动摘要和待办事项提取;案例三则提供了学习内容的结构化笔记生成方法。每个案例都包含详细的实现步骤和Python代码示例。这些技术可显著提升工作效率,虽然仍需人工检查,但已能节省大量时间处理重复性工作。文章为读者提供了可直接复用的解决方案,帮助将AI技术应用于实际工作场景。
2025-08-18 20:35:10
984
原创 【源力觉醒 创作者计划 】文心大模型4.5系列与DeepSeek、通义千问Qwen 3.0深度对比分析
百度文心4.5、讯飞DeepSeek和阿里Qwen3.0代表国内AI大模型三大技术路线。文心4.5在多模态处理和复杂推理方面表现突出,适合技术密集型应用;DeepSeek专注于语音交互和多语言处理;Qwen3.0依托阿里知识图谱,在电商推荐和知识问答领域优势明显。三者各有所长:文心强在跨领域技术应用,DeepSeek精于语音交互,Qwen则在商业场景表现优异。未来发展趋势将延续差异化竞争,文心可能保持技术领先,其他两者深耕垂直领域。
2025-07-30 17:31:25
599
原创 我的第一个开源项目:排序算法的多种实现方式
摘要:本项目通过Python实现四种经典排序算法(冒泡排序、选择排序、快速排序和归并排序),采用模块化结构组织代码,包含算法实现、性能测试和文档说明。项目展示了每种算法的时间/空间复杂度特性,并提供了单元测试来验证算法正确性和比较执行效率。测试结果表明,快速排序和归并排序在较大数据集上表现优于平方时间复杂度的算法。项目文档详细说明了安装使用方法,可作为学习排序算法和Python编程的参考案例。
2025-07-30 17:20:55
961
1
原创 《我的第一个开源项目:代码与梦想的旅程》
《从颤抖提交到开源奇迹:一个数学系学生的MatrixFlow之旅》讲述了作者从零开始的开源历程。300行的稚嫩矩阵库起步,经历了内存泄漏的PR重构、首个Star的激励、Issue风暴的锤炼,最终发展为支持多语言、分布式计算的成熟项目。故事展现了开源社区的协作力量:从14岁高中生优化的GPU内核,到68岁贡献者的代码审查,项目在三年间经历了技术架构与治理体系的全面进化。作者从数学系学生成长为项目架构师,不仅收获了技术成长,更在开源生态中找到了人生伴侣。文章以"每个PR都是改变世界的起点"作
2025-07-29 16:59:56
211
原创 《动态规划在电商推荐系统的革命:从算法优化到业务增长》
摘要:动态规划算法正成为电商推荐系统优化的关键技术。通过状态压缩与记忆化搜索,将传统协同过滤算法的O(n²)复杂度降至O(n),使某电商平台推荐响应时间从520ms缩短至82ms,服务器资源消耗降低71.9%。业务层面,该算法实现点击率提升6.6个百分点,季度GMV增长3100万元,并拓展至医疗、制造等领域。研究表明,算法优化已成为企业数字化转型的核心驱动力,2025年全球相关增值预计突破1.2万亿美元,印证"算法是21世纪新石油"的论断。
2025-07-29 16:22:34
638
原创 博士申请考核:考博面试流程及如何准备
本文分享了博士申请面试的全流程经验,包括英语考核环节(自我介绍、英译中、口语交流)、PPT汇报制作要点、专家提问环节注意事项等。作者提供了详细的英语自我介绍模板、口语素材获取渠道、面试PPT模板链接,并强调要熟悉个人研究成果和博士研究计划。文章还汇总了博士申请常见问题解答和联系导师的邮件案例解析,指出面试环节虽重要但录取结果往往取决于前期导师意向。建议考生根据目标院校要求针对性准备,保持平常心应对面试。
2025-07-29 00:36:44
1151
原创 Metasploit简介
本文详细介绍了Metasploit框架的六大核心模块及其渗透测试流程:1. 辅助模块(扫描识别)2. 漏洞利用模块(攻击代码)3. 载荷模块(植入代码)4. 后渗透模块(信息收集)5. 编码模块(免杀处理)。重点演示了针对Linux系统Samba服务的完整攻击链,包括端口扫描、漏洞利用、权限提升(提权至system)、凭证窃取(Hashdump/Mimikatz)以及后门植入技术。文章还系统介绍了Windows/Linux平台下多种后门生成方法(exe/dll/ps1等),并详细讲解了进程迁移、日志清理等后
2025-07-29 00:24:26
996
原创 VMware虚拟机中安装KAIL
摘要:本文详细介绍了在VMware虚拟机中安装Kali Linux的步骤。首先需从官网下载对应版本的Kali镜像,然后创建新虚拟机并配置参数(建议分配2GB内存和30-40GB磁盘空间)。安装过程中需注意选择英文界面以避免中文路径问题,并设置root账户密码。关键步骤包括:选择图形化安装、配置磁盘分区、跳过网络镜像安装、将GRUB安装到主引导记录。最后提醒注意小键盘状态,并建议新手使用NAT网络模式。安装完成后即可登录使用Kali系统。
2025-07-29 00:08:49
455
原创 使用kail做wifi渗透,网卡rtl8188eu(超详细)
本文介绍了在Kali Linux中使用无线网卡进行WiFi破解的详细步骤。首先需要挂载支持监听模式的无线网卡,通过airmon-ng工具检查并开启监控模式。然后使用airodump-ng监听周边WiFi信号,对目标WiFi进行抓包。为提高抓包成功率,可通过aireplay-ng实施攻击迫使设备重连获取握手包。最后利用Kali自带的rockyou.txt字典文件,使用aircrack-ng对获取的cap文件进行离线暴力破解。整个过程涉及网卡配置、信号监听、数据抓取和密码破解等多个环节,适用于网络安全测试目的。
2025-07-29 00:08:08
822
原创 使用深度神经网络对多发性硬化症进行病变与大脑同时分割Simultaneous lesion and brain segmentation in multiple sclerosis using
摘要:本研究探讨基于卷积神经网络(CNN)的多发性硬化症(MS)磁共振影像分割方法,比较3DUnet和3D-2D混合架构DeepSCAN在公开数据集MSSEG和内部数据集Insel上的表现。结果显示:1)交叉验证时两种CNN方法均超越现有技术(Dice系数>80),达到人工评估者间一致性水平;2)跨中心测试时性能下降但仍优于传统工具(如LST);3)DeepSCAN结合解剖标签训练后性能提升,而3DUnet则下降。研究证实深度学习可实现与人工相当的MS病灶分割,同时发现多任务学习对架构性能的影响存在差
2025-07-02 17:49:30
1098
原创 基于多模态MRI的多级特征探索基础模型在胶质瘤分割、分子分型和分级中的应用
本研究提出了一种基于基础模型的多任务深度学习框架MTS-UNET,用于胶质瘤的联合分割与分子特征分析。该模型整合了肿瘤感知特征编码(TAFE)和跨模态差异(CMD)两个创新模块,在包含2249例患者的7个公共数据集中表现出优异性能:分割Dice系数达84%±3.51,IDH突变预测AUC为90.58%±1.25,1p/19q共缺失预测AUC为69.22%±3.58,分级AUC为87.54%±2.65。消融实验证实了模块设计的有效性,T2-FLAIR不匹配特征的提取显著提升了IDH预测准确性。这种端到端的多任
2025-07-02 01:24:41
1141
原创 BrainSeg:走向神经图像分割的基础模型BrainSegFounder: Towards Foundation Models for NeuroimageSegmentation
蓬勃发展的大脑健康研究领域越来越多地利用人工智能(AI)来分析和解读神经影像数据。医学基础模型已显示出具有更高样本效率的卓越性能前景。这项工作介绍了一种通过自监督训练创建用于多模态神经影像分割的三维(3D)医学基础模型的新方法。我们的方法涉及一种使用视觉transforms 的新型两阶段预训练方法。第一阶段从来自41400名参与者的大规模未标记多模态脑磁共振成像(MRI)图像的神经影像数据集中对大体健康大脑的解剖结构进行编码。这一预训练阶段专注于识别不同大脑结构的形状和大小等关键特征。
2025-07-01 17:22:50
1016
原创 增强自注意力机制CeAtt,增强局部细节!
摘要:本文提出GridFormer——一种基于网格结构的残差密集Transformer框架,用于恶劣天气条件下的图像恢复。针对传统方法对复杂天气条件处理效果有限的问题,GridFormer通过嵌入残差密集变压器块(RDTB)构建网格结构,有效整合多尺度上下文信息。关键创新包括:(1)紧凑增强自注意力机制,通过特征采样和局部增强提高效率;(2)三行七列的网格架构实现多分辨率信息共享;(3)值交换策略促进特征融合。实验表明,GridFormer能有效处理多种天气退化效应,显著提升图像质量和下游视觉任务性能。
2025-06-11 19:17:45
570
原创 频域分析和注意力机制
本文提出FSTA-SNN模型,通过频域分析和注意力机制优化脉冲神经网络性能。研究发现SNN浅层学习垂直特征、深层学习水平特征,且时间步增加对特征学习影响有限。针对此,模型包含基于DCT的空间注意力子模块(提取全频谱特征)和时间注意力子模块(调节幅度变化),有效降低脉冲发放率并提升准确率。实验表明,该模块在多个数据集上优于现有方法,为SNN优化提供了新思路。论文代码已开源。
2025-06-11 19:05:33
681
原创 小波变换+注意力机制
摘要:本文提出了一种基于单输入多输出(SIMO)架构的多尺度运动去模糊网络MLWNet,通过简化传统多尺度方法的复杂度并引入可学习离散小波变换(LWT)模块,有效提升了去模糊性能。网络采用编码-解码结构,结合小波融合块(WFB)和小波头块(WHB)实现多尺度语义融合,利用LWT模块挖掘频域信息并保留方向性特征。通过"完美重建"原则约束小波变换的学习,并设计多尺度自监督损失指导训练。实验表明,该方法在多个真实数据集上取得优越的去模糊效果,同时保持较高计算效率。
2025-06-10 20:52:17
943
原创 空间域加频率域的组合
我们介绍了DiffFNO,这是一种新颖的扩散框架,用于任意尺度的超分辨率任务,并通过加权傅里叶神经算子(WFNO)得到强化。WFNO中的模式重新平衡能够有效地捕捉关键频率分量,显著改善对高频图像细节的重建,而这些高频细节对于超分辨率任务至关重要。门控融合机制(GFM)将基于注意力的神经算子(AttnNO)提取的空间特征自适应地补充到WFNO的频谱特征中。这增强了网络捕捉全局结构和局部细节的能力。自适应时间步长(ATS)常微分方程求解器。
2025-06-07 02:25:06
994
原创 OMNI-DIMENSIONAL DYNAMIC CONVOLUTION(全维动态卷积)
(a) 空间维度上的位置注意力乘法操作(location-wise Multiplication),涉及到沿着卷积核的空间维度(卷积核的高度和宽度)进行乘法操作。这里,ODConv计算的位置维度注意力asi被应用于卷积核的每个空间位置上,这允许网络动态调整卷积核在处理不同空间位置的信息时的重要性。(d) 卷积核空间中核维度上的核注意力乘法操作,沿着卷积核维度进行的乘法操作。的一个维度(关于卷积核数量)赋予卷积核动态属性,但忽略了其他三个维度(关于每个卷积核的空间大小,输入通道数和输出通道数)。
2025-05-22 13:35:19
109
原创 Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
在训练阶段,ECB提取多个路径中的特征,包括正常的3×3卷积、通道扩展和压缩卷积,以及来自中间特征的一阶和二阶空间导数。具体来说,输入特征X 先经过一个 C×C×1×1的卷积层,然后对中间特征分别应用两个缩放的 Sobel 滤波器,提取梯度信息。其中,perm 表示张量的维度置换操作,用于交换张量的第 1 和第 2 个维度,因此 perm(Ke)的形状为 C×D×1×1;与 Sobel 处理方式类似,输入特征 X 首先经过一个 C×C×1×1的卷积,然后使用拉普拉斯滤波器提取二阶导数信息。
2025-05-22 13:30:34
202
原创 Score-CAM:卷积神经网络的评分加权视觉解释
本文提出了一种新的卷积神经网络可视化解释方法——Score-CAM,该方法通过前向传递得分获取激活图的权重,摆脱了对梯度的依赖,从而提供更直观和公平的决策解释。Score-CAM在识别和定位任务中表现出色,优于现有的Grad-CAM等基于梯度的方法,并通过了合理性检查,展示了其作为模型调试工具的有效性。该方法通过归一化操作增强了类别区分能力,为理解神经网络的决策过程提供了新的视角。
2025-05-15 00:48:49
706
原创 利用耦合有限元和神经网络计算的骨重塑模拟多尺度方法
本文旨在开发一种基于有限元分析(FEA)和神经网络(NN)计算的多尺度分层混合模型,通过将介观尺度(骨小梁网络层级)与宏观尺度(全骨层级)耦合,模拟骨重建过程。由于全骨模拟(包括骨小梁层级的3D重建)耗时巨大,本研究仅在宏观层面进行有限元计算,而通过训练的神经网络替代介观尺度所需的有限元代码,以快速预测骨小梁的形态与力学适应性。宏观尺度的骨力学属性根据介观尺度神经网络计算的形态与力学适应性结果进行更新。
2025-04-16 17:38:36
1055
原创 (Physics-Informed Neural Networks)和DeepONet的区别
其主要特点是将物理系统的约束条件(如偏微分方程)融入到神经网络的训练过程中,使得网络不仅能学习数据中的模式,还能满足物理规律。在传统的神经网络训练中,网络的目标是通过数据来拟合目标函数,而在PINN中,网络不仅仅依赖数据,还会受到物理方程的约束。PINNs在训练过程中,不仅会根据数据进行调整,还会受到物理定律的约束,从而使得学习到的结果不仅能够拟合数据,还能够符合物理定律。这样,神经网络在学习过程中,会不断地调整自己的参数,直到它找到一个最好的答案,使得这个答案能够满足物理问题的数学方程和边界条件。
2025-04-15 02:02:41
327
原创 将有限元与深度神经运算符相结合,以快速多尺度建模力学问题
该研究提出了一种基于深度神经算子(DeepONet)的机器学习增强型多尺度建模框架,旨在解决传统多尺度方法中高保真细尺度模型计算成本过高的问题。通过将DeepONet作为细尺度动力学的高效代理模型,该方法在离线阶段利用精细离散模型(如分子动力学或SPH)生成的数据训练神经网络,学习潜在的微观物理规律;在线阶段则将训练好的DeepONet与粗尺度PDE求解器(如有限元法)动态耦合,实现跨尺度响应预测。
2025-04-15 01:57:58
351
原创 基于通用算子近似定理的DeepONet非线性算子学习方法
基于算子通用逼近定理,本研究提出深度算子网络(DeepONet),突破了传统神经网络仅逼近连续函数的局限,首次实现深度架构对任意非线性连续算子的高精度逼近。DeepONet创新性采用双通道架构:分支网络(Branch Net):通过深度神经网络编码输入函数空间(如L²空间、Sobolev空间)的离散采样数据,学习函数空间内在拓扑结构;主干网络(Trunk Net):构建输出函数定义域的隐式基函数,实现从输入到输出算子的非线性映射。
2025-04-15 01:56:16
430
原创 数据驱动的多尺度多物理模型,以推导增材制造的过程-结构-属性关系
增材制造(AM)因其在无需专用模具条件下即可调控材料成分、结构与性能的优势,成为复杂几何终端部件制造的关键技术。然而,AM过程中多物理场耦合机制(如熔池动力学、相变演变)难以通过实验直接观测,本研究提出基于工艺-结构-性能关系全链条建模的数值模拟框架,结合多尺度数据挖掘技术突破传统优化瓶颈:1)在工艺-结构阶段,通过高保真热-流-固耦合模型(误差<5%)解析激光功率、扫描策略对微观晶粒形貌的影响,建立工艺参数-微观结构映射数据库;2)
2025-04-15 01:40:01
523
原创 一种基于学习的多尺度方法及其在非弹性碰撞问题中的应用·
我们在工程应用中观察和利用的材料宏观特性,源于电子、原子、缺陷、域等多尺度物理机制间复杂的相互作用。多尺度建模旨在通过利用固有的层次化结构来理解这些相互作用——在更粗尺度上的行为会调控并平均化更细尺度的行为。这需要反复求解计算代价高昂的细尺度模型,且通常需预先知晓那些影响粗尺度的细尺度行为特征(如序参数、状态变量、描述符等)。我们在双尺度框架下应对这一挑战:首先通过离线计算学习细尺度行为,然后将学习到的行为直接应用于粗尺度计算。
2025-04-13 23:51:30
376
原创 深度学习与力学建模融合的骨力学性能研究
(2)骨的多层级结构:皮质骨(密质骨)是致密Haversian系统,孔隙率3%~5%,高刚度与强度(模量10~20 GPa,强度110~220 MPa),横观各向同性;(5)骨缺损重建领域的关键挑战:骨组织力学的复杂性(非均质性和各向异性),临床影像技术局限(分辨率不足和体内关联缺失),个体化治疗困境(植入物设计缺陷和疗效波动性)融合高分辨率micro-CT(微结构解析) 与 低分辨率临床CT(临床应用),从临床CT中提取骨密度分布、结构张量等关键微结构参数,突破临床影像分辨率限制。
2025-04-13 01:25:03
290
原创 Fortuneteller: A Focal Transformer for Boundary-Aware Prostate Segmentation Using CT Images
在子窗口池化步骤中,输入特征图x ∈ Rd×H''×W''被分割成大小为{sw, sw}的子窗口网格,然后通过一个简单的线性层fpl在空间上对子窗口进行池化。不同层级l的池化特征图提供了精细粒度和粗糙粒度的丰富信息,在获得所有层级l的池化特征图后,使用三个线性投影层fq、fk和fv来计算第一级的查询Q,以及所有级的键K和值V。对于第i个窗口内的查询Qi ∈ Rd×sw×sw,从包含查询所在窗口的周围区域中的Kl和Vl中提取sr× sr的键和值。边界感知轮廓,是通过考虑前列腺掩膜边界附近的像素来生成的。
2025-04-01 01:25:28
306
原创 EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation
接着,应用3×3深度卷积(DW C(·)),随后是批归一化(BN(·))和ReLU激活函数,以增强上采样后的特征图。EMCAD通过高效的多尺度卷积增强特征图,同时使用通道、空间和分组(大核)门控注意力机制来整合复杂的空间关系和局部注意力。多尺度卷积注意力模块(MSCAM)结合了通道注意力块(CAB)、空间注意力块(SAB)和高效多尺度卷积块(MSCB)来增强特征图,同时保持上下文关系。高效上卷积块(EUCB)被设计用于逐步上采样当前阶段的特征图,以匹配来自下一个跳跃连接的特征图的维度和分辨率。
2025-04-01 01:22:58
904
原创 MAGIC:重新思考医学图像分割的动态卷积设计
近年来,动态卷积在医学图像分割的CNN相关网络中展现出性能提升。其核心思想是根据输入相关的注意力函数,用多个卷积核的线性组合替换静态卷积核。然而,现有的动态卷积设计存在两个局限性:其一,卷积核通过在输入特征图上施加一维注意力函数进行加权,忽略了多维信息之间的协同作用,导致卷积核的计算并非最优;其二,线性核聚合效率低下,限制了模型学习更复杂模式的能力。在本文中,作者重新思考动态卷积设计以解决这些局限性,并提出了多维聚合动态卷积(MAGIC)。
2025-03-30 01:50:20
1165
原创 MSV-Mamba: 用于超声心动图分割的多尺度视觉Mamba网络
超声心动图图像分割在分析心脏功能和诊断心血管疾病中起着至关重要的作用。超声成像经常面临诸如高噪声水平、低时空分辨率以及解剖结构复杂性等挑战。这些因素显著阻碍了模型准确捕捉和分析心脏各区域的结构关系和动态模式的能力。Mamba作为一种新兴模型,是目前最前沿的方法之一,广泛应用于各种视觉和语言任务。它能够以线性复杂度高效捕捉全局信息,并弥补了卷积神经网络(CNN)和传统Transformer的不足。
2025-03-30 00:43:13
650
3
原创 EGA边缘引导注意力:有效保留高频边缘信息,提升分割精度,助力高效涨点
编码器:负责从输入图像中捕获和抽象特征。解码器:专注于提取显著特征,生成与输入图像分辨率匹配的解码图。边缘引导注意力模块(EGA):利用拉普拉斯算子增强边缘信息,确保在解码过程中保留高频细节。MEGANet通过结合编码器、解码器和EGA模块,能够在多个尺度上保留边缘信息,从而提高了息肉分割的精度。EGA模块的主要作用是通过拉普拉斯算子提取和保留高频边缘信息,增强模型对弱边界的检测能力。编码器特征:来自编码器的视觉特征。高频特征:通过拉普拉斯算子提取的边缘信息。解码器预测特征:来自更高层的解码器预测特征。
2025-03-26 00:53:24
654
原创 SLAB:具有简化线性注意力和渐进从参数化批量归一化
RepBN是用于加速Transformer模型推理的归一化方法,其核心思想是将BatchNorm与线性层合并,以减少推理时的计算开销:1. RepBN的定义:RepBN通过引入一个可学习的参数η,与BatchNorm的输出相结合,形成新的归一化公式。2. RepBN的优势:RepBN结合了BatchNorm在训练时的稳定性和线性层在推理时的高效性,从而在不牺牲模型性能的前提下,提高了Transformer模型的推理速度。图2放大:RepBN是BatchNorm的一种新的重参数化公式,用以进一步提高性能。
2025-03-17 17:51:43
150
原创 注意力机制+多尺度卷积
创新点:通过多尺度和门控机制改进大核注意力,能够在不同粒度水平上聚合全局和局部信息,避免潜在的阻塞伪影。结合经典多尺度机制和新兴的大核注意力,优化了模型的性能和计算效率。整合门控机制和空间注意力,去除不必要的线性层,聚合信息丰富的空间上下文。创新点:提出了AGGN模型,该模型在不依赖手动标记肿瘤掩码的情况下,依然能够实现优异的分级性能。设计了双域注意力机制,能够同时考虑通道和空间信息,突出MRI特征图中的关键模态和位置。多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,
2025-03-17 17:17:54
590
原创 LM-UNet: Whole-Body PET-CT LesionSegmentation with Dual-Modality-BasedAnnotations Driven by Latent
然而,PET-CT图像的自动病灶分割仍面临三大挑战:1)现有公共数据集的单模态标注限制(仅依赖PET或CT);2)难以区分病理性与生理性高代谢区域;3)CT结构信息利用不足。题目:LM-UNet: Whole-body PET-CT Lesion Segmentation with Dual-Modality-based Annotations Driven by Latent Mamba U-Net。LM-UNet: 全身 PET-CT 病变分割,基于双模态注释的潜在 Mamba U-Net 驱动。
2025-03-11 01:17:29
211
原创 YOLOv12涨点优化:Shape IoU,Focal-EIOU 更加关注边界框本身的形状和尺度
边界盒回归损失作为检测器定位分支的重要组成部分,在目标检测任务中起着重要的作用。现有的边界盒回归方法通常考虑GT盒与预测盒之间的几何关系,利用边界盒的相对位置和形状来计算损失。
2025-03-10 20:35:36
738
原创 【报错处理】NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch
GeForce3090等高性能显卡配置pytorch时出现错误:错误是当前3090显卡与torch的版本不支持。30系列的显卡不支持CUDA11.0以下的版本解决办法就是更改torch版本。PyTorch版本和对应的CUDA版本的关系在上看。假设使用的是RTX 3090,项目依赖的PyTorch为1.7.1sm_8611.0-12.21.7.1取交集,得到适合的CUDA版本为CUDA-11.0通过安装正确版本的PyTorch库。
2024-11-13 14:25:16
1541
原创 F.pad函数、torch.chunk函数、torch.roll函数、torch.narrow函数
首先创建了一个4x6的张量,并分别沿着第一个维度(行)和第二个维度(列)将其分割成了多个块。沿着第一个维度分割时,我们得到了两个2x6的张量;沿着第二个维度分割时,我们得到了三个4x2的张量。原始的3x3张量被填充成了一个5x7的张量。左边和上边各填充了1个单位的0,右边和下边各填充了2个单位的0。这样,填充后的张量尺寸变大了,但原始数据仍然保留在中心位置。
2024-11-10 17:03:40
247
2025创新杯(原钉钉杯)大数据挑战赛:A题智慧工厂工业设备传感器数据分析 + B题道路路面维护需求综合预测 完整论文+代码结果+思路(全套资料)
2025-07-24
AI少女游戏软件资源-107G整合包
2025-07-28
2025年东三省-深圳D题完整论文+代码结果+思路(全套资源)多人身份鉴定问题
2025-05-21
2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项):A题-农业灌溉系统优化模型 完整论文+代码结果+思路(全套资源)保姆级教程
2025-07-13
2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项):B题-疾病的预测与大数据分析 三套完整论文+代码结果+思路(全套资源)保姆级教程
2025-07-13
2025年第八届河北省研究生数学建模竞赛:C 题 完整论文+代码结果+思路(全套资源)
2025-06-08
2025 年第八届河北省研究生数学建模竞赛A 题 基于图论的复杂网络分析与可视化建模+完整论文+代码结果+思路(全套资源)
2025-06-06
2025年第八届河北省研究生数学建模竞赛:B 题 三相桥逆变器建模与控制器参数设计+完整论文+代码结果+思路(全套资源)
2025-06-06
2025年江西省数学建模A题完整论文+代码结果+思路(全套资源)2025 年江西研究生数学建模竞赛题A题电动汽车充电桩共享优化与电网安全协同模型完整思路 模型代码 结果 成品分享
2025-05-29
2025年电工杯B题完整论文+代码结果+思路(全套资源)城市垃圾分类运输的路径优化与调度
2025-05-29
2025年电工杯A题完整论文+代码结果+思路(全套资源)光伏电站发电功率日前预测问题
2025-05-29
2025年江西省数学建模C题完整论文+代码结果+思路(全套资源)2025 年江西研究生数学建模竞赛题C题基于大雾背景视频学习的能见度回归建模完整思路 模型代码 结果 成品分享
2025-05-29
2025年江西省研究生数学建模B题完整论文+代码结果+思路(全套资源)工业机器人机械臂运动控制模型
2025-05-29
2025年江西省数学建模A题完整论文+代码结果+思路(全套资源)
2025-05-27
2025年中青杯A题完整论文+代码结果+思路(全套资源)
2025-05-26
2025年中青杯B题完整论文+代码结果+思路(全套资源)
2025-05-26
2025年长三角b题完整论文+代码结果+思路(全套资源+多家资源整合)
2025-05-21
2025年山东省数模g题完整论文+代码结果+思路(全套资源+多家资源整合)
2025-05-21
2025年深圳杯(东三省)B题完整论文+代码结果+思路(全套资源+多家资源整合)
2025-05-21
2025年数维杯C题完整论文+代码结果+思路(全套资源+多家资源整合)
2025-05-12
2025年高教社杯全国大学生数学建模竞赛:A题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-04
2025年高教社杯全国大学生数学建模竞赛:B题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-04
2025年高教社杯全国大学生数学建模竞赛:D题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-04
2025年高教社杯全国大学生数学建模竞赛:E题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-04
2025年高教社杯全国大学生数学建模竞赛:C题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-04
2025年高教社杯全国大学生数学建模竞赛:E题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-03
2025年高教社杯全国大学生数学建模竞赛:C题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-03
2025年高教社杯全国大学生数学建模竞赛:D题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-03
2025年高教社杯全国大学生数学建模竞赛:B题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-03
2025年高教社杯全国大学生数学建模竞赛:A题完整论文+代码结果+思路(全套资源)保姆级教程
2025-09-03
2025年第五届天府杯全国大学生数学建模竞赛:A题-B题-C题-D题-E题完整论文+代码结果+思路(全套资源)保姆级教程
2025-08-13
2025年第五届天府杯全国大学生数学建模竞赛:C题完整论文+代码结果+思路(全套资源)保姆级教程
2025-08-13
2025年第五届天府杯全国大学生数学建模竞赛:E题完整论文+代码结果+思路(全套资源)保姆级教程
2025-08-13
2025年第五届天府杯全国大学生数学建模竞赛:D题完整论文+代码结果+思路(全套资源)保姆级教程
2025-08-13
2025年第五届天府杯全国大学生数学建模竞赛:B题完整论文+代码结果+思路(全套资源)保姆级教程
2025-08-13
2025年第五届天府杯全国大学生数学建模竞赛:A题完整论文+代码结果+思路(全套资源)保姆级教程
2025-08-13
2025年第六届华数杯大学生数学建模竞赛:A题-B题-C题-完整论文+代码结果+思路(全套资源)保姆级教程
2025-08-07
2025年第六届华数杯大学生数学建模竞赛:C题-完整论文+代码结果+思路(全套资源)
2025-08-07
2025年第六届华数杯大学生数学建模竞赛:B题-完整论文+代码结果+思路(全套资源)
2025-08-07
2025年第六届华数杯大学生数学建模竞赛:A题-完整论文+代码结果+思路(全套资源)
2025-08-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人