F.pad函数、torch.chunk函数、torch.roll函数、torch.narrow函数

1、F.pad函数

torch.nn.functional.pad(input, pad, mode='constant', value=0)

函数变量说明:

  • input (Tensor): 需要填充的张量。
  • pad (tuple[int, int] 或 tuple[tuple[int, int], ...]): 一个整数元组,指定在每个维度上要填充的零填充的数量。对于二维张量(如图像),这个元组通常是(pad_left, pad_right, pad_top, pad_bottom)。对于更高维度的张量,可以嵌套元组来指定每个维度的填充。
  • mode (str, 可选): 填充的模式。默认是'constant',表示用常数填充。其他选项可能包括'reflect'(反射填充,即镜像边缘的值)、'replicate'(复制填充,即复制边缘的值)等。
  • value (float, 可选): 当mode='constant'时,用于填充的值。默认是0。

下面是一个二维张量(模拟灰度图像)的填充示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小的土拨鼠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值