python中list与array的区别

本文探讨了Python中list和array的区别,包括创建方法、相互转换以及它们的函数和方法。list作为基本数据结构,可存储不同类型的元素,而array则由numpy封装,要求元素类型一致。此外,介绍了如何在list和array之间进行转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python中list与array的区别

​ list是Python中最基本的数据结构,list中的数据类不必相同的,即每个元素可以是不同的数据类型。list中存放的是数据的地址(指针)。如list1=[1,‘a’,3,8]需要4个指针和四个数据,增加内存和cpu的消耗。

​ array则是由numpy封装,存放的元素都是相同的数据类型。

一、创建方法

1、创建一个列表,只要把逗号分隔的不同的数据项使用方括号括起来即可,使用len()可以得到其长度。如下所示:

list1 = ['Google', 'Runoob', 1997, 2000]#不同数据类型
list2 = [1, 2, 3, 4, 5 ]
list3 = ["a", "b", "c", "d"]
len(list3)#查看list3的长度

与字符串的索引一样,列表索引从0开始。列表可以进行截取、组合等。

2、 array的创建:参数既可以是list、元组或通过numpy直接创建,使用对应的属性shape直接得到其大小。

a=np.array((1,2,3,4,5))# 参数是元组  
b=np.array([6,7,8,9,0])# 参数是list  
c=np.array([[1,2,3],[4,5,6]])# 参数二维数组 
d=np.arange(1,10,1)#创建一个从1到10的array,间隔为1
d.shape #查看d的大小
二、相互转换

list→array:np.array(a)

array→list:a.tolist()

三、函数&方法
list array
<think>嗯,用户想知道Python中ndarrayarray区别。首先,我需要回忆一下自己了解的NumPy知识。在Python中,NumPy是一个处理数组的重要库,经常听到ndarray这个词,而array可能指的是不同的东西。 用户提供的引用里提到,ndarray是一个类对象,而array是一个方法。比如引用[2]说,ndarray是类,array是方法。所以可能array是创建ndarray实例的函数。例如,当用户用numpy.array()时,返回的是ndarray类型的对象。这样,array是创建ndarray的工厂函数,而ndarray是实际的数组类型。 然后,我需要确认两者的关系。根据引用[2],ndarray是NumPy中的核心类,而array()函数用来生成这个类的实例。因此,用户使用np.array([1,2,3])时得到的是一个ndarray对象。这意味着array是构造ndarray的方法,而ndarray是数组的实际类型。 另外,用户可能混淆了Python内置的array模块和NumPy的array。例如,Pythonarray模块提供了array类型,但它处理的是同质数据类型的一维数组,而NumPy的ndarray支持多维和更复杂的操作。但根据引用中的内容,用户的问题主要集中在NumPy中的array和ndarray区别,所以可能不需要涉及内置array模块,但可能需要提及以避免混淆。 接下来,用户提供的引用[5]提到ndarray和pandas的转换,这可能说明在实际应用中,用户会遇到不同库之间的数据转换,但问题核心还是ndarrayarray的关系。引用[3]和[4]涉及recarray和Image转换的例子,可能对用户的问题帮助不大,但需要确保回答时正确引用。 总结,回答需要明确两点:1. array是NumPy中的一个函数,用于创建ndarray对象;2. ndarray是NumPy库中的多维数组类,所有通过numpy.array()创建的数组都是这个类的实例。同时需要指出常见误解,比如和Python内置array区别,以及使用场景。 可能用户在实际使用中,调用np.array()得到了一个ndarray,所以需要解释两者的从属关系。此外,可能需要提到其他创建ndarray的方法,比如np.zeros, np.ones等,它们也返回ndarray对象,进一步说明array函数是众多创建方法之一。 最后,确保回答结构清晰,先定义两者,再解释关系,最后说明常见误解和使用场景。同时,根据用户要求,生成相关问题,比如如何转换,应用场景等。</think>### Python中ndarrayarray区别解析 在Python的NumPy库中,`ndarray`和`array`是密切相关的两个概念,但它们的角色和定义不同。以下是具体分析: --- #### 1. **核心定义** - **`ndarray`(N-dimensional Array)** 这是NumPy库中定义的一个**类**,表示多维数组。所有通过NumPy创建的数组对象(无论是向量、矩阵还是高维张量)都是`ndarray`类的实例[^2]。 示例: ```python import numpy as np arr = np.array([1, 2, 3]) # 返回一个ndarray对象 print(type(arr)) # 输出:<class 'numpy.ndarray'> ``` - **`array`** 这是NumPy库中用于创建`ndarray`对象的**函数**(方法)。它的作用是将输入数据(如列表、元组)转换为`ndarray`实例[^2]。 示例: ```python data = [1, 2, 3] np_array = np.array(data) # 调用array函数生成ndarray对象 ``` --- #### 2. **两者关系** - `array`是创建`ndarray`的**入口方法**,而`ndarray`是最终的**数据容器**。 - 类似其他类构造函数的关系,例如`list`和`list()`,但`ndarray`的功能更强大,支持矢量化运算、广播机制等。 --- #### 3. **常见误解澄清** - **Python内置`array`模块的区别** Python标准库中也有一个`array`模块(需通过`import array`导入),但它仅支持一维数组且功能有限,而NumPy的`ndarray`支持多维和复杂计算。 - **其他创建`ndarray`的方法** `np.zeros()`、`np.ones()`、`np.arange()`等函数也会返回`ndarray`对象,说明`array`并非唯一生成方式[^5]。 --- #### 4. **实际应用场景** - **`ndarray`的用途** 用于科学计算、矩阵运算、机器学习等领域,例如图像处理(如PILNumPy数组转换[^4])、数据预处理(如Pandas的Series/DataFrame交互[^5])。 - **`array`函数的使用场景** 当需要将Python原生数据结构(列表、元组)转换为高性能的NumPy数组时使用。 --- #### 5. **类型转换示例** 若需将`ndarray`转换为Python原生列表(而非标准库的`array`),直接调用`tolist()`方法即可: ```python numpy_arr = np.array([1, 2, 3]) python_list = numpy_arr.tolist() # 输出:[1, 2, 3] ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值