最近,小编开始关注深度学习,深度学习也在近几年来发展迅速,其与人工智能、机器学习的关系如下图:
机器学习是实现人工智能的方法,深度学习是实现机器学习的技术,深度学习的应用主要分为两个方向:机器视觉和自然语言处理,具体应用有:
1、机器视觉CV:图像分类、图像生成、图像风格转换、图像翻译、图像压缩等;
2、自然语言处理NLP:机器翻译、舆论情感分析、自动摘要等。
深度学习的经典算法有:卷积神经网络CNN:主要用于CV领域、循环神经网络RNN:主要用于NLP领域、自动编码器、稀疏编码、深度信念网络、限制玻尔兹曼机、深度强化学习等。
其中神经网络学习是近年来比较热门的算法,首先小编介绍最小的神经网络,如图:
只有单层神经元,无隐含层,其中,为输入特征,
为权重,
为偏置,
的过程为激活函数。
激活函数可具体表示为:
一般常用于二分类logistics神经网络训练的激活函数为sigmoid激活函数:,;
例:令,
,如下图,求输出结果Y。
根据公式,不难求出:
在求出Y后,需要定义一个目标函数,用于衡量算法对数据的拟合程度,进而可以调整神经网络训练的参数,常用的目标函数是损失函数。一般logistics回