单层神经网络二分类logistics回归模型+TensorFlow实例实现

        最近,小编开始关注深度学习,深度学习也在近几年来发展迅速,其与人工智能、机器学习的关系如下图:

机器学习是实现人工智能的方法,深度学习是实现机器学习的技术,深度学习的应用主要分为两个方向:机器视觉和自然语言处理,具体应用有:

        1、机器视觉CV:图像分类、图像生成、图像风格转换、图像翻译、图像压缩等;

        2、自然语言处理NLP:机器翻译、舆论情感分析、自动摘要等。

深度学习的经典算法有:卷积神经网络CNN:主要用于CV领域、循环神经网络RNN:主要用于NLP领域、自动编码器、稀疏编码、深度信念网络、限制玻尔兹曼机、深度强化学习等。

        其中神经网络学习是近年来比较热门的算法,首先小编介绍最小的神经网络,如图:

        只有单层神经元,无隐含层,其中,X=\left \{ x_{1},x_{2}, ..., x_{3}\right \}为输入特征,W=\left \{ w_{1},w_{2},...,w_{n} \right \}为权重,b为偏置,W*X\rightarrow h(W*X)的过程为激活函数。

        激活函数可具体表示为:h_{w,b}(X)=f (W^{T}X)=f(\sum_{i=1}^{3}(w_{i}x_{i})+b)

一般常用于二分类logistics神经网络训练的激活函数为sigmoid激活函数:h_{w,b}(X)=f (W^{T}X)=\frac{1}{1+e^{-W^{T}X}},;

                                                                  \begin{Bmatrix} P(Y=0|x)=h_{w}(x)=\frac{1}{1+e^{-W^{T}x}} \\ P(Y=1|x)=1-h_{w}(x)=\frac{e^{-W^{T}x}}{1+e^{-W^{T}x}} \end{Bmatrix}

例:令X=[3,2,1]W=[W_{0},W_{1}]=[[0.4,0.6,0.5], [0.3,0.2,0.1]] ,如下图,求输出结果Y。

根据h_{w,b}(X)=f (W^{T}X)=f(\sum_{i=1}^{3}(w_{i}x_{i})+b)公式,不难求出:

                                                         \left\{\begin{matrix} w_{0}X=3\times 0.4+1\times 0.6+2\times 0.5=2.8\\ w_{1}X=3\times 0.3+1\times 0.2+2\times 0.1=1.3\\ y_{0}=f(w_{0}X)=\frac{1}{1+e^{-w_{0}X}}=\frac{1}{1+e^{-2.8}}=0.942676\\ y_{1}=f(w_{1}X)=\frac{1}{1+e^{-w_{1}X}}=\frac{1}{1+e^{-1.3}}=0.785835 \end{matrix}\right.

        在求出Y后,需要定义一个目标函数,用于衡量算法对数据的拟合程度,进而可以调整神经网络训练的参数,常用的目标函数是损失函数。一般logistics回

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值