前言
这次我们要说的是完全背包问题, 还记得下面这张图吗,可以看到01背包问题和完全背包问题的区别在于每种物品的数量
- 01背包问题中每种物品只有一个, 只有选与不选两种情况
- 完全背包问题种每种物品有多个, 选不选, 选多少都是考虑的问题
定义: 一个背包容积为C, 一共N种物品, 分别编号0, 1, 2....i, i+1, .....N-1, 第i个物品的重量为weight[i], 价值为value[i], 每种物品可以选用任意多次, 问背包中最多可以放入多少价值的物品
分析
- 完全背包问题与01背包问题的唯一不同就在于每种物品的可选种类,回顾01背包问题中的那道例题,dp[i][j] = max( dp[i-1][j], dp[i-1][j-weight[i]] + value[i]), 先想清楚: 为什么dp[i][j]的结果要从dp[i-1][...]种考虑, 也即是为什么要变小编号
- 原因: 选了第 i 号元素他就没了, 只能从0 - i-1号元素种去寻找
- 很容易得出: 完全背包问题, 即是选了第i号元素, 还会有第i号元素(因为数量无穷),那么它的状态转移方程是不是就可以直接看作选了第i号物品, 还是面临着从0 - i号物品种选取(下面看了例题的状态转移方程即懂)
例题:零钱兑换
题目描述