动态规划——完全背包问题(力扣322: 零钱兑换)

本文探讨了动态规划中的完全背包问题,通过分析01背包和完全背包的区别,阐述完全背包问题的定义,并以力扣322题“零钱兑换”为例,解释完全背包的状态转移方程,提出最少硬币数量的优化解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

这次我们要说的是完全背包问题, 还记得下面这张图吗,可以看到01背包问题和完全背包问题的区别在于每种物品的数量

  • 01背包问题中每种物品只有一个, 只有选与不选两种情况
  • 完全背包问题种每种物品有多个, 选不选, 选多少都是考虑的问题

 定义: 一个背包容积为C, 一共N种物品, 分别编号0, 1, 2....i, i+1, .....N-1, 第i个物品的重量为weight[i], 价值为value[i], 每种物品可以选用任意多次, 问背包中最多可以放入多少价值的物品

分析

  • 完全背包问题与01背包问题的唯一不同就在于每种物品的可选种类,回顾01背包问题中的那道例题,dp[i][j] = max( dp[i-1][j], dp[i-1][j-weight[i]] + value[i]), 先想清楚: 为什么dp[i][j]的结果要从dp[i-1][...]种考虑, 也即是为什么要变小编号
    • 原因: 选了第 i 号元素他就没了, 只能从0 - i-1号元素种去寻找
    • 很容易得出: 完全背包问题, 即是选了第i号元素, 还会有第i号元素(因为数量无穷),那么它的状态转移方程是不是就可以直接看作选了第i号物品, 还是面临着从0 - i号物品种选取(下面看了例题的状态转移方程即懂)

例题:零钱兑换

题目描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

索利亚噶通

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值