自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 卫星姿态描述基础知识学习记录(部分)

相对姿态(坐标系旋转)的描述:假设目标的坐标系为B,参考坐标系为R,对目标的姿态描述即确定目标坐标系与参考坐标系的关系。由于目标坐标系一般固结在目标上,这样便实现了目标的相对姿态描述。描述方式主要有:方向余弦式、欧拉轴/角式、欧拉角式、姿态四元数;由于姿态可唯一确定,这些描述方式间可相互转换。

2025-05-27 16:30:50 1231

原创 小白的LLM学习记录(一)

检索+增强+生成——即LLM+Search system用户提出问题后先进入一个数据库的检索环节,再生成prompt提示词,进入LLM,然后由LLM生成回答,具体的流程如下图:主要涉及的技术内容不包括大模型LLM本身结构的修改,而是直接在前面构架一个检索框架。这个检索框架的知识库一般是文件或者文档资料,构建为向量数据库存储,索引构建是重要环节。主要的技术步骤包括:文件加载load;文本切片。

2025-05-13 14:17:49 250

原创 mmdetection训练自己的数据集(Linux自用)

mmdetection自建数据集目标检测实践与代码复现

2025-03-05 14:55:44 173

原创 Kimi总结计算机类SCI 1区期刊

来自Kimi的回答

2025-02-23 13:05:16 865

原创 YOLOv8怎么添加自己的模块(自用)

default.yaml为默认配置文件,里面包含训练、验证、推理时的一些默认参数,以及数据增强等。model.load('yolov8n.pt')#权重加载。完成后最好在相应的定义py文件中设置测试,检查能否成功调用。调用位置:parse_model部分。cfg下即模型和数据集配置文件。最主要的为nn子文件夹。

2024-12-23 11:45:23 1208

原创 2024pycharm连接SSH远程记录使用conda虚拟环境

选conda虚拟环境,找到condabin下的conda可执行文件(地址在cmd命令下which conda得到)2.远程连接站点,端口,用户名,密码输入(连接后,后续就不用输入直接选择exist下的即可)ssh -p (端口号位置) (用户名位置)@(接入网址),按照下图位置填写即可。输入which conda 命令查看conda所在位置,记住一会要用。ssh -p (端口号位置) (用户名位置)@(接入网址)输入密码(密码就是不显示,输入回车就行)下面配置文件映射:参考链接3视频。

2024-10-12 21:32:43 1057

原创 模型的计算速度、参数、计算量、访存量

根据算子在执行过程中对计算资源的需求,可以将它们大致分为两类:计算密集型算子和访存密集型算子。- **定义**:计算密集型算子是指在执行过程中,计算操作占主导地位的算子。- **定义**:访存密集型算子是指在执行过程中,内存访问操作占主导地位的算子。- 对于访存密集型算子,可以通过优化内存访问模式、使用更快的内存(如HBM)或者采用数据并行化技术来减少内存访问的延迟。- 对于计算密集型算子,可以通过使用高性能的计算单元(如GPU、TPU)来加速计算。- 计算量较大,对处理器的计算能力要求较高。

2024-10-09 21:01:02 421

原创 WSL2安装ubuntu记录Win11

检查安装是否成功: cat /usr/local/cuda-12.1/include/cudnn_version.h | grep CUDNN_MAJOR -A 2。之后进入lib文件:cd cudnn-linux-x86_64-8.9.4.25_cuda12-archive/4.输入wsl.exe --install Ubuntu-22.04(上面的可安装版,打开powershell,输入wsl -l -v可查看运行的ubuntu。用键盘的到图示位置,将下属命令复制(注意版本问题,这里是12.1)

2024-10-02 19:22:14 1668

原创 模型计算量和参数大小的计算、访存量(自用)链接转载

CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的? - 知乎 (zhihu.com)轻量化网络(一)一文讲清神经网络中的 显存/显卡带宽/参数量/计算单元/FLOP/FLOPs/MAC/MACs/QPS - 知乎 (zhihu.com)深度学习模型大小与模型推理速度的探讨 - 知乎 (zhihu.com)全连接层的算力(矩阵乘法)计算方式_全连接层计算公式-CSDN博客模型(卷积、fc、attention)计算量 MAC/FLOPs 的手动统计方法 - 知乎 (zhihu

2024-09-27 18:52:47 265

原创 YOLOv5复现步骤及cmd命令(自用)

1)激活刚才创建的环境:conda activate yolo;2)下载依赖包:pip install -r requirements.txt (一般都得用镜像源:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple)可以conda list查看环境下的下载列表。查看当前环境下的list: 1)激活当前环境 conda activate yolo(yolo为自己起的环境名字) 2) conda list。

2024-09-08 19:02:12 1215

原创 K-means

​。

2024-04-25 19:58:04 348 1

原创 神经网络与深度学习课程总结(四)——目标检测与语义分割

以往的模型一个窗口只能预测一个目标,把窗口输入到分类网络中,最终得到一个预测概率,这个概率偏向哪个类别则把窗口内的目标预测为相应的类别”本质即在图像上预设好的不同大小,不同长宽比的参照框。输入图片输出为目标类别和目标的边界框——(c,x,y,w,h)5维的向量,c为有无目标的置信度。个框,每个框的bb个数为𝐵,分类器可以识别出𝐶种不同的物体,那么所有整个ground truth的长度为𝑆 × 𝑆 × (𝐵 × 5 + 𝐶),YOLO v1中,输出数量是30,YOLO v2和以后版本使用了自聚类的。

2024-04-25 11:53:10 2237 1

原创 神经网络与深度学习课程总结(三)——卷积神经网络2

这个阈值是随便定义的,为了找到一个最合适的阈值满足我们的要求,我们就必须遍历0到1之间所有的阈值,而每个阈值下都对应着一对查准率和查全率,从而我们就得到了这条曲线。VGG实现了更深层次的卷积网络结构,是否网络深度越深越好呢,事实是当到达一定深度时,随着网络层数的增加模型的性能不增反降,网络的深度受限,残差网络的提出,有效的解决这一问题。下图1为二分类的混淆矩阵,对于多分类是形如下图2的多行多列的矩形块,对角线上的数字表示正确分类的结果,因此当数据全部分布在对角线上时说明分类完全正确(过于理想化的)

2024-04-17 21:35:33 1908 2

原创 论文阅读记录 Attention Is All You Need——Transformer

Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequencealigned RNNs or convolution.transformer是首个完全依赖于注意力机制模型,能有效实现数据的并行处理。

2024-04-12 17:05:46 774 1

原创 神经网络与深度学习课程总结(二)——卷积神经网络

这16个卷积核分别是下图中的3,4,6通道的卷积核,输出图像的大小为10*10*16.训练的参数有6*[5*5*3+1]+9*[5*5*4+1]+1*[5*5*6+1]=1516;第二层S2:池化层2*2步长2,下采样,输入28*28*6输出为14*14*6;14*14*6*(2*2+1)=5880个连接。第四层S4:同S2操作,池化层2*2步长2,输入为10*10*16,输出为(10-2+2)/2=5*5*16,参数为16*2=32个,连接为5*5*16*(2*2+1)=2000。

2024-04-03 21:38:56 2018 1

原创 神经网络与深度学习课程总结(一)

​。

2024-03-31 22:06:56 772 1

原创 个人论文阅读记录2

Fb()是权重分配网络用于给Fa(Fa()是卷积网络,跟着的小波变换用于将高频噪声滤除),和Fc(小波卷积神经网络,对高频和低频即全频段特征提取)分配权重。A、B、C注意力模块的结构如下图:参考SE,squeeze-and-excitation networks,即将特征图拉直为1x1xC(C为通道数)特征向量再对每个通道分配权重(文章选择用的为可变形的卷积网络(deformable convolution),这里采用了三种不同大小的卷积核,每一个卷积后面使用不同的注意力模块A、B、C.

2024-03-26 16:48:08 647 1

原创 个人论文阅读记录

论文将意图识别定义为轨道识别问题,根据论文中设定的情景,即考察单个参考航天器S和非合作的非合作体G在无外界控制指令期间(文中描述为两次脉冲控制的间隔内,且S,G均没有轨道机动),仅在轨道动力学作用下的相对位置关系;论文中总结了10种G相对S的运动构型,数据集由随机参数设定的这10种轨道构型的数据组成,最终的意图识别模型即实现10种构型的聚类(应该不是文中的classification,而是clustering,没有看到标签化处理数据,不过确实应该是无监督学习)。这里不太理解,为什么文中提及的方法可以。

2024-03-20 22:18:32 815 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除