判断一棵二叉树是否是平衡二叉树

本文详细解释了平衡二叉树的概念及其验证方法。首先定义了平衡二叉树的两个核心特征,随后通过两种不同的算法实现对平衡二叉树的判断,包括简单的递归检查和优化后的高度同步返回算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们先来整理一下什么是平衡二叉树?
满足以下两点的就是平衡二叉树:
1.左右子树的高度差不能超过1
2.左右子树也是平衡二叉树

需要注意的是空树也是平衡二叉树
例如下面这棵树就不是平衡二叉树
在这里插入图片描述

因为对于B来说左右子树高度超过了1,所以它不是平衡二叉树。

方法一:

这样的话,如果是空树则是平衡二叉树,如果不是空树,我们就去判断左子树是不是平衡二叉树,判断的依据就是左右子树高度差不超过1,代码如下:

int IsBalance(BNode *root)
{
	if (root == NULL)
	{
		return 1;
	}
	int isBalance = IsBalance(root->left);
	if (isBalance == 0)
	{
		return 0;
	}
	int leftHight = GetHeight(root->left);
	int rightHight = GetHeight(root->right);
	int diff = leftHight - rightHight;
	if (diff < -1 && diff>1)
	{
		return 0;
	}
	else {
		return 1;
	}
}

方法二:

通过上面的代码我们可以看出,递归的时候要遍历看是不是平衡,并且又要遍历高度,这样的话效率并不是很高,那么这时候就想,每次遍历的时候能不能直接将高度也返回呢?如下面的代码:

int IsBalance(BNode *root,int *pHeight)
{
	if (root == NULL)
	{
		*pHeight = 0;
		return 1;
	}
	int leftHeight;
	int rightHeight;
	int leftBalance = IsBalance(root->left, &leftHeight);
	int rightBalance = IsBalance(root->right, &leftHeight);
	*pHeight = MAX(leftHeight, rightHeight) + 1;
	if (leftBalance == 0 || rightBalance == 0)
	{
		return 0;
	}
	int diff = leftHeight - rightHeight;
	if (diff < -1 || diff>1)
	{
		return 0;
	}
	else {
		return 1;
	}
}
判断一个二叉树是否平衡二叉树可以通过以下步骤实现: 1. **定义平衡二叉树的性质**:平衡二叉树是一种二叉树,其中每个节点的左子树和右子树的高度差不超过1。 2. **递归检查每个节点**:对于每个节点,检查其左子树和右子树的高度差是否不超过1。如果所有节点都满足这个条件,则该二叉树平衡二叉树。 3. **计算子树高度**:在检查每个节点时,需要计算其左子树和右子树的高度。可以使用递归方法计算子树的高度。 以下是一个示例代码,展示了如何判断一个二叉树是否平衡二叉树: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def is_balanced(root): def check(node): if node is None: return 0 left = check(node.left) if left == -1: return -1 right = check(node.right) if right == -1 return max(left, right) + 1 return check(root) != -1 # 示例用法 # 构建一个平衡二叉树 root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) root.right.left = TreeNode(6) root.right.right = TreeNode(7) print(is_balanced(root)) # 输出: True # 构建一个不平衡的二叉树 unbalanced_root = TreeNode(1) unbalanced_root.left = TreeNode(2) unbalanced_root.left.left = TreeNode(3) print(is_balanced(unbalanced_root)) # 输出: False ``` 在这个示例中,`is_balanced` 函数通过递归检查每个节点的高度差来判断二叉树是否平衡二叉树
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值