python二叉树

本文详细介绍了树的定义,包括其基本术语和性质,如节点的度、高度、完全二叉树和满二叉树的概念。此外,讨论了二叉树的类型,特别是平衡二叉树的特性。最后,阐述了二叉树的四种遍历方法:先序、中序、后序和层序遍历,并通过实例展示了这些遍历方式的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

树的定义

树(tree)是一种抽象数据类型(ADT)或是视作这个数据类型的数据结构,用来模拟拥有树状结构的数据集合
它是由n(n>=1)个有限的结点组成的一个层次关系的集合。
把它叫做树是因为是看起来像树,根在上,而叶朝下的,它具有一下的特点
1、每个节点都有零个或者多个子节点
2、没有父节点的节点叫做根节点
3、除了根节点之外,每个字节点可以分为多个不想交的子树
4、除了根节点之外,每个节点只有一个父节点

图一
二叉树演示

在图1,该树一共有13个节点,其中A是根,其余节点分成3个互不相交的子集:
T1={B,E,F,K,L},T2={C,G},T3={D,H,I,J,M};T1,T2和T3都是根A的子树,且本身也是一棵树。
例如T1,其根为B,其余节点分为两个互不相交的子集;T11={E,K,L},T12={F}。
T11和T12都是B的子树。而在T11中E是根,{K}和{L}是E的两棵互不相交的子树,其本身又是只有一个根节点的树。

上述观察实际上给了我们一种严格的定义方法:

1、树是元素的集合
2、该集合可以为空,这时候树中没有元素,我们成它为空树(empty tree)
3、如果该集合不为空,那么该集合有一个根节点,以及0个或者多个子树,根节点和它的子节点用一条边(edge)连接

上面几点使用的递归定义的树,也就是在定义树的过程中使用了树(子树)本身,由于树的递归特征,许多树的相关操作也可以方便的实现递归实现

基本术语

1、节点的度:一个节点所含有的子树
2、树的度:一棵树的所有节点中最大的度
3、叶节点或终端节点:度为零的节点
4、父亲节点或者父节点:若一个节点含有子节点,就称这个节点为这些子节点的父节点(自身的上一级)
5、孩子节点或子节点:父亲节点的子节点(自身的下一级)
6、兄弟节点:同一个父节点
7、节点的层次:从根开始定义起,根为第一层,根的子节点为第二层,以此类推
8、树的高度或深度:树中节点的最大层次
9、堂兄弟节点:父节点在同一层次的节点
10、节点的祖先:从根节点到该节点分支上的所有节点
11、子孙:自身的所有下一级节点
12、森林:由m(m>=0)棵互不相交的树的集合

性质

1、在二叉树的第i层上至多有2的(k-1) 个节点(i>0)(也就是2的层数-1次方)
2、深度(高度)为k的二叉树至多有2的k次方 -1 个节点 (k >0)(从第一层累加,加到k层)
3、对于任意一棵二叉树,如果其叶节点数位N0,而度数位2的结点总数为N2,则N0=N2+1
4、具有n个结点的完全二叉树的深度必为log2(n+1)
5、

二叉树的类型

1、完全二叉树:

在这里插入图片描述

2、满二叉树:

在这里插入图片描述## 3、平衡二叉树
平衡二叉树又被称为AVL树(这里区别于AVL算法),他是一棵二叉排序树,且具有以下性质:他是一棵空树或他的左右两个的子树的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树

二叉树的遍历

所谓二叉树的遍历,指的是如何按某种路径巡防树中的每次结点,使得每个结点均被访问一次,而且仅被访问一次。
介绍完了二叉树的定义及基本性质,接下来,我们需要了解二叉树的遍历。所谓二叉树的遍历,指的是如何按某种搜索路径巡防树中的每个结点,使得每个结点均被访问一次,而且仅被访问一次。对于二叉树,常见的遍历方法有:先序遍历,中序遍历,后序遍历,层序遍历。这些遍历方法一般使用递归算法实现。
先序遍历的操作定义为:若二叉树为空,为空操作;否则(1)访问根节点;(2)先序遍历左子树;(3)先序遍历右子树。
中序遍历的操作定义为:若二叉树为空,为空操作;否则(1)中序遍历左子树;(2)访问根结点;(3)中序遍历右子树。
后序遍历的操作定义为:若二叉树为空,为空操作;否则(1)后序遍历左子树;(2)后序遍历右子树;(3)访问根结点。
层序遍历的操作定义为:若二叉树为空,为空操作;否则从上到下、从左到右按层次进行访问。
如对于下图3
在这里插入图片描述
其先序遍历、中序遍历、后序遍历、层序遍历的结果为:

先序遍历为:
18 7 3 4 11 5 1 3 6 2 4 
中序遍历为:
3 7 4 18 1 5 3 11 2 6 4 
后序遍历为:
3 4 7 1 3 5 2 4 6 11 18 
层序遍历为:
[[18], [7, 11], [3, 4, 5, 6], [1, 3, 2, 4]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

·惊鸿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值