Pytorch torch.manual_seed()的简单用法

本文介绍了在深度学习中设定随机种子的重要性,通过`torch.manual_seed`确保生成相同的伪随机数序列,从而在多次实验中重复初始化权重,达到结果复现。同时提到了如何针对CPU和GPU设置种子,以保证在GPU环境下也能得到一致的初始化权重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单来说就是指定随机数种子(种子可以是个任意int值),用来生成伪随机数:

import torch

torch.manual_seed(1)
print(torch.rand(1))
print(torch.rand(1))
print(torch.rand(1))

输出:

tensor([0.7576])
tensor([0.2793])
tensor([0.4031])

之后再运行同样会生成相同的随机数序列

这样的意义在于可以保证在深度网络在随机初始化各层权重时,多次试验的初始化权重是一样的,结果可以复现。

此外,还可以给GPU设置种子,上面讲的是给CPU设置的情况:

# 为当前GPU设置
if args.cuda:
	torch.cuda.manual_seed(args.seed)
# 为所有GPU设置
torch.cuda.manual_seed_all(args.seed)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值