immortal12
hey,calm down
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
IEEE论文模板(latex/word)
IEEE论文模板下载地址step1step2原创 2020-06-26 22:59:42 · 5858 阅读 · 4 评论 -
【论文笔记】CVPR三篇HIC论文
1 Hyperspectral image classification based on multi-scale residual network with attention mechanismZhang, Xiangdong, Tengjun Wang and Yun Yang. “Hyperspectral Images Classification Based on Multi-scale Residual Network.” (2020).1.1 具体方法 为了提取有效信息,忽略无效原创 2020-06-12 09:31:27 · 706 阅读 · 0 评论 -
【论文笔记】Beyond the Patchwise Classification:SSFCN for HIC
Y. Xu, B. Du and L. Zhang, “Beyond the Patchwise Classification: Spectral-Spatial Fully Convolutional Networks for Hyperspectral Image Classification,” in IEEE Transactions on Big Data, doi: 10.1109/TBDATA.2019.2923243.Xu Y , Du B , Zhang L . Beyond the .原创 2020-06-10 20:34:51 · 746 阅读 · 0 评论 -
【论文笔记】Neighboring Region Dropout for HIC
M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza, “Neighboring Region Dropout for Hyperspectral Image Classification,” in IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 6, pp. 1032-1036, June 2020, doi: 10.1109/LGRS.2019.2940467.Paoletti M E ,.原创 2020-06-08 17:28:34 · 331 阅读 · 0 评论 -
【论文笔记】HSIC WIth Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement
C. Zheng, N. Wang and J. Cui, “Hyperspectral Image Classification With Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 10, pp. 7307-7316, Oct. 2019, doi: .原创 2020-06-07 14:18:01 · 909 阅读 · 3 评论 -
【论文笔记】Heterogeneous Transfer Learning for HSIC Based on CNN
X. He, Y. Chen and P. Ghamisi, “Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on Convolutional Neural Network,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 5, pp. 3246-3263, May 2020, doi: 10.1109/TGR.原创 2020-06-04 21:16:46 · 868 阅读 · 0 评论 -
【论文笔记】Spectral-Spatial Attention Network for Hyperspectral Image Classification
H. Sun, X. Zheng, X. Lu and S. Wu, “Spectral–Spatial Attention Network for Hyperspectral Image Classification,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 5, pp. 3232-3245, May 2020, doi: 10.1109/TGRS.2019.2951160.1.贡献点 首先提出一个.原创 2020-05-29 15:20:13 · 4111 阅读 · 8 评论 -
【论文笔记】Visual Attention-Driven Hyperspectral Image Classification
J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza and J. Li, “Visual Attention-Driven Hyperspectral Image Classification,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 10, pp. 8065-8080, Oct. 2019, doi: 10.1109/TGRS.2019.2918080.Haut .原创 2020-05-28 22:54:58 · 659 阅读 · 2 评论 -
【论文笔记】Naive Gabor Networks for Hyperspectral Image Classification
C. Liu, J. Li, L. He, A. Plaza, S. Li and B. Li, “Naive Gabor Networks for Hyperspectral Image Classification,” in IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2020.2978760.1.创新点 本文设计了一个phase-induced Gabor kernel,用来代替C.原创 2020-05-26 12:08:50 · 764 阅读 · 1 评论 -
【论文笔记】Recent Advances on Spectral-Spatial HSIC:An Overview and New Guidance
1.贡献点 第一,提出“Spatial Dependancy Systems”的概念,即像元/标签实体和具有覆盖范围和权重两大特性的邻域的聚合体,并将“Spatial Dependancy Systems”分为fixed、adaptive、global systems(根据定义邻域的方式)或single-dependancy、bilayer-dependancy、multiple-dependancy systems(根据空间依赖的个数); 第二,将现有的光谱-空间分类方法根据空谱融合时期归为原创 2020-05-28 16:17:41 · 619 阅读 · 0 评论 -
【论文笔记】GhostNet:More Features from Cheap Operations
Han, Kai, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu and Chang Xu. “GhostNet: More Features from Cheap Operations.” ArXiv abs/1911.11907 (2019): n. pag.github: ghostnet1.创新点 本文提出了三种结构:Ghost module、Ghost bottlenecks、GhostNet。Ghost module是一种特殊的卷积.原创 2020-05-21 13:59:07 · 804 阅读 · 0 评论 -
Generative Adverarial Networks for Hyperspectral Image Classification(2019)——深度学习论文笔记(十一)
Generative Adversarial Networks for Hyperspectral Image Classification(2019)Abstract 生成对抗网络包括生成器和鉴别器,本文使用一个CNN来鉴别输入,使用一个CNN来产生假目标。这两个CNN一起训练,生成器试图以假乱真,鉴别器试图 1.INTRODUCTION 2.METHODOLOGY...原创 2020-05-28 16:27:42 · 1005 阅读 · 3 评论 -
Capsule Networks for HSI Classification(2019)——深度学习论文笔记(九)
Capsule Networks for Hyperspectral Image Classification(2019)Abstract CNNs虽然已经在HSI分类任务上取得了很好的效果,但其无法利用HSI空间-光谱特征之间的关系,很难处理高度复杂的HSI数据。尽管更深的CNN架构想要打破这些限制,它们也在网络参数的收敛上遇到了挑战,这使得它们无法在高难度的HSI分类任务中取得很好的表现...原创 2020-05-28 16:28:20 · 1122 阅读 · 0 评论 -
A Spectral Attention Module-Based Convolutional Network for HSI Classification(2019)——深度学习论文笔记(七)
Learning to Pay Attention to Spectral Domain:A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification (2019)Abstract 在过去几年,用于HSIs分类的CNNs取得了很大进步。然而CNNs对所有波段使用相同...原创 2020-05-28 16:29:09 · 1196 阅读 · 4 评论 -
Classification of Hyperspectral Images by Gabor Filtering Based Deep Network(2018)——深度学习论文笔记(六)
(2019)Abstract 1.INTRODUCTION 2.METHODOLOGY A.Convolutional Neural Network B.Proposed Hyperspectral Deep Network for Spaectral-spatial Classification3.EXPERIMENTSA.Hyperspectra...原创 2020-05-28 16:29:15 · 1000 阅读 · 0 评论 -
Deep Recurrent Neural Networks for Hyperspectral Image Classification(2019)——深度学习论文笔记(五)
Deep Recurrent Networks for Hyperspectral Image Classification(2019)Abstract vector-based ML方法在表示HSI像元时,会导致其内在的序列结构信息损失。论文首次提出将HSI像元视为sequence data,用一个经过调整的RNN框架来处理。 经过调整的RNN框架:使用了一个新的激活函数——PRe...原创 2020-05-28 16:29:22 · 1512 阅读 · 4 评论 -
Deep Few-Shot Learning for Hyperspectral Image Classification(2019)——深度学习论文笔记(四)
Deep Few-Shot Learning for Hyperspectral Image Classification(2019)Abstract 论文提出了一种deep few-shot learning方法来解决HSI分类中样本量少的问题。算法包含了3种新策略:首先,通过deep residual 3-D CNN提取spectral-spatial features以减少标记时的...原创 2020-05-28 16:29:27 · 2188 阅读 · 7 评论