动态规划入门(九) 区间DP

本文详细介绍区间动态规划的概念、核心思路及具体应用案例。涵盖线性区间与环状区间问题的求解方法,以及如何通过四边形不等式优化时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一. 区间dp概述

二. 核心思路

三. 朴素区间dp(n^3)

1. 线性区间

1.1 引例描述

1.2 题解代码 

2. 环状区间

2.1 引例描述

2.2 题解代码

四. 时间优化(n^2)

1. 四边形不等式

2. 环状区间优化

五. 例题分析

1. Poj2955 括号匹配(一)

2. Poj1651 抽卡片

3. 整数划分(四)

4. Hdu 4632 最多回文子串


一. 区间dp概述

        顾名思义,区间dp就是在区间上进行动态规划,求解一段区间上的最优解;该问题的求解思路主要是通过合并小区间的最优解进而得出整个大区间上最优解的dp算法。

二. 核心思路

        既然让我求解在一个区间上的最优解,那么我把这个区间分割成一个个小区间,求解每个小区间的最优解,再合并小区间得到大区间即可。所以在代码实现上,我可以枚举区间长度len为每次分割成的小区间长度(由短到长不断合并),内层枚举该长度下可以的起点,自然终点也就明了了。然后在这个起点终点之间枚举分割点,求解这段小区间在某个分割点下的最优解。其板子如下:

for(int len = 1;len<=n;len++){//枚举长度
        for(int j = 1;j+len<=n+1;j++){//枚举起点,ends<=n
            int ends = j+len - 1;
            for(int i = j;i<ends;i++){//枚举分割点,更新小区间最优解
                dp[j][ends] = min(dp[j][ends],dp[j][i]+dp[i+1][ends]+something);
            }
        }
    }

三. 朴素区间dp(n^3)

1. 线性区间

1.1 引例描述

Problem Description

N 堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的 2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将 N 堆石子合并成一堆的最小代价。

例如 1 2 3 4,代价最低合并方法为:

1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)

1.2 题解代码 

        令dp[i][j]表示石子中第i堆到第j堆合并的最小代价,则 j~ends 堆合并 = 较小的(原来, 分割点i坐部分重量 + 分割点i右边部分重量 + 合并后两堆总重量),该问题的转移方程可以总结如下:

dp[j][ends] = min(dp[j][ends],dp[j][i]+dp[i+1][ends]+weigth[i][ends]);

        注意实现时可以用sum[j] - sum[i - 1]表示i~j堆的重量来进行优化。 

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
int stone[105];
int dp[105][105];
int sum[105];
int main()
{
    int n;
    scanf("%d",&n);
    memset(sum,0,sizeof(sum));
    memset(dp,INF,sizeof(dp));
    for(int  i =1;i<=n;i++){
        scanf("%d",&stone[i]);
        sum[i] = sum[i - 1] + stone[i];//重量
        dp[i][i] = 0;
    }
    for(int len = 1;len<=n;len++){//枚举长度
        for(int j = 1;j+len<=n+1;j++){//枚举起点,ends<=n
            int ends = j+len - 1;
            for(int i = j;i<ends;i++){//枚举分割点
                dp[j][ends] = min(dp[j][ends],dp[j][i]+dp[i+1][ends]+sum[ends]-sum[j-1]);//更新状态
            }
        }
    }
    cout<<dp[1][n]<<endl;
    return 0;
}

2. 环状区间

2.1 引例描述

codevs 2102 环状石子归并

Problem Description

N 堆石子首尾相接摆成一个。现要将石子有次序地合并成一堆。规定每次只能选相邻的 2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将 N 堆石子合并成一堆的最小代价。

2.2 题解代码

        环状以后合并区间的情况就可以从后往前合并,最后合并完成可能是1~n,2~n~1,3~n~2.....这种n个石子合并的情况。所以我们可以破环成链,将前n-1各元素也放到n后面构成一个线性的环状序列,在对这个序列进行线性dp即可。

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
int stone[105];
int dpmin[205][205];//最小
int dpmax[205][205];//最大
int sum[205];
int main()
{
    int n;
    scanf("%d",&n);
    memset(sum,0,sizeof(sum));
    memset(dpmin,INF,sizeof(dpmin));
    memset(dpmax,-1,sizeof(dpmax));
    for(int  i =1;i<=n;i++){
        scanf("%d",&stone[i]);
        sum[i] = sum[i - 1] + stone[i];
        dpmin[i][i] = 0;
        dpmax[i][i] = 0;
    }
    for(int i = 1;i<=n;i++){
        sum[i+n] = sum[i+n-1]+stone[i];//展开的n后面的n-1~1重量
        dpmin[i+n][i+n] = 0;
        dpmax[i+n][i+n] = 0;
    }
    for(int len = 1;len<=n;len++){//长度还是最大n
        for(int j = 1;j+len<=2*n;j++){//起点枚举最大到2*n-1,ends<=2*n-1
            int ends = j+len - 1;
            for(int i = j;i<ends;i++){//注意!i<ends!!!因为i=ends时,dp[ends+1][ends]是不成立的!
                dpmin[j][ends] = min(dpmin[j][ends],dpmin[j][i]+dpmin[i+1][ends]+sum[ends]-sum[j-1]);
                dpmax[j][ends] = max(dpmax[j][ends],dpmax[j][i]+dpmax[i+1][ends]+sum[ends]-sum[j-1]);
            }
        }
    }
    int ansmin = 0xfffffff;
    int ansmax = -1;
    for(int i = 1;i<=n;i++){
        ansmin = min(ansmin,dpmin[i][i+n-1]);//找1~n,2~n~1,3~n~2....的合并n个堆的中最大和最小的值
        ansmax = max(ansmax,dpmax[i][i+n-1]);
    }
    cout<<ansmin<<endl;
    cout<<ansmax<<endl;
    return 0;
}

四. 时间优化(n^2)

        在查找最优分割点的时候,我们浪费了大量时间。为了优化时间复杂度,我们可以把最优分割点保存下来,这样在查找的时候利用保存的最优分割点来优化查找过程。该思路主要通过四边形优化来实现。

1. 四边形不等式

        四边形不等式主要用来寻找 s[i][j](i~j的最优分割点)与其他分割点的关系。该不等式的内容是指:如果某计算项满足a<b<=c<d且f[a][c]+f[b][d]<=f[a][d]+f[b][c],则说这个关系满足四边形不等式。简而言之,交叉小于包含。四边形不等式可以表示为 s[i][j-1]<=s[i][j]<=s[i+1][j] ,其证明过程如下:

(1)证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件

(2)证明m满足四边形不等式

(3)证明s[i,j-1]≤s[i,j]≤s[i+1,j]

(4)详细证明过程请参考 四边形不等式优化

2. 环状区间优化

        以石子归并v2为例。

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
int dp[2005][2005];
int sum[2005];
int relation[2005][2005];
int num[2005];
int main()
{
    int n;
    scanf("%d",&n);
    memset(sum,0,sizeof(sum));
    memset(dp,0x3f,sizeof(dp));
    for(int i = 1;i<=n;i++){
        scanf("%d",&num[i]);
        dp[i][i] = 0;
        relation[i][i] = i;
        sum[i] = sum[i-1] + num[i];
    }
    for(int i = 1;i<=n;i++){
        sum[i+n] = sum[i+n-1] +num[i];
        relation[i+n][i+n] = i+n;//分割点初始化
        dp[i+n][i+n] = 0;
    }
    for(int len = 1;len<=n;len++){
        for(int j = 1;j+len<=2*n;j++){
            int ends = j+len - 1;
            for(int k = relation[j][ends-1];k<=relation[j+1][ends];k++){//k的范围
                if(dp[j][ends]>dp[j][k]+dp[k+1][ends]+sum[ends]-sum[j-1])
                {
                    dp[j][ends]=dp[j][k]+dp[k+1][ends]+sum[ends]-sum[j-1];
                    relation[j][ends] = k;
                }
            }
        }
    }
    int ans = 0xfffffff;//一定要开0xfffffff不然错QAQ
    for(int i = 1;i<=n;i++){
        ans = min(ans,dp[i][i+n-1]);
    }
    printf("%d\n",ans);
    return 0;
}

五. 例题分析

1. Poj2955 括号匹配(一)

给出一个的只有'(',')','[',']'四种括号组成的字符串,求最多有多少个括号满足题目里所描述的完全匹配。

        这里的状态转移是以一个if为基础的,如果s[i]与s[j]匹配,那么明显的dp[i][j] = dp[i+1][j-1]+2;然后在这个基础上枚举分割点k。我们令dp[i][j]表示第i~j个字符间的最大匹配字符数,由此可以得到状态转移方程如下:

                   dp[i][j] = \left\{\begin{matrix} dp[i+1][j-1]+2,s[i] \equiv s[j]\\ max(dp[i][j],dp[i][k]+dp[k+1][j]),s[i] \not\equiv s[j] \end{matrix}\right.

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[105][105];
int main()
{
    char s[105];
    while(scanf("%s",s+1)!=EOF)
    {
        memset(dp,0,sizeof(dp));//dp初始化为0,因为一方面是找最大之,一方面初始匹配数为0
        int len = strlen(s+1);//dp[i][i]不用处理,因为自己和自己不匹配就是0
        if(s[1]=='e')break;
        for(int l = 1;l<=len;l++){
            for(int i = 1;i+l<=len+1;i++){
                int j= i+l-1;
                if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']')){//如果匹配,先更新
                    dp[i][j] = dp[i+1][j-1]+2;
                }
                for(int k = i;k<j;k++){//k<j
                    dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j]);
                }
            }
        }
        cout<<dp[1][len]<<endl;
    }
    return 0;
}

2. Poj1651 抽卡片

给你n个数字,要求不能删除两端点的数字,然后删除其他数字的代价是该数字和左右相邻数字的乘积,问把数字(除端点)删完后的最小总代价。

        因为最后都要删掉中间所有的数字,所以我们可以分隔一个个小区间删数字,合并区间求最小。那么我们的状态就是目前删掉的数字区间,但是我们分割的时候的意思是抽一个卡片出来,所以这个卡片不能在已经抽出的状态里面,所以dp[i][j]里面是不包含j卡片的!我们令dp[i][j]表示抽出第i~j-1张卡片时候的最小值,则状态转移方程如下:

                dp[i][j] = min(dp[i][j],dp[i][k] + dp[k+1][j] +num[i-1]*num[k]*num[j])

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[105][105];
int num[105];
int main()
{
    int N;
    cin>>N;
    memset(dp,0x3f,sizeof(dp));//dp初始化为inf,因为找最小值
    for(int i = 1;i<=N;i++){
        cin>>num[i];
        dp[i][i] = 0;//dp[i][i]要初始化,作为由小到大累计的初始条件,自己取出自己就是为0
    }
    for(int len = 1;len<=N;len++){
        for(int i = 2;i+len<=N+1;i++){//起点从2开始,因为不包括两端点
            int j = i+len-1;
            for(int k = i;k<j;k++){
                dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+num[i-1]*num[k]*num[j]);
            }
        }
    }
    cout<<dp[2][N]<<endl;//由dp[i][j]的定义,输出合并第2~N-1个卡片的结果
    return 0;
}

3. 整数划分(四)

出两个整数 n , m ,要求在 n 中加入m - 1 个乘号,将n分成m段,求出这m段的最大乘积

        这里给的乘号是有限个,所以状态方程里必须包含使用乘号的个数,此外还要包含区间长度。所以怎么用二维dp实现包含m和n,我们可以用dp[i][j]表示在第1~i个字符里插入j个乘号的最大值。我们令dp[i][j]表示在第1~i个字符里插入j个乘号的最大值,用num[i][j]表示第i~j个字符表示的数字。则状态转移方程如下:

                           dp[i][j] = max(dp[i][j],dp[k][j-1]*num[k+1][i])

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll dp[50][50];
ll num[50][50];
int main()
{
    int T;
    scanf("%d",&T);
    char s[100];
    while(T--)
    {
        int m;
        scanf("%s%d",s+1,&m);
        int len = strlen(s+1);
        memset(dp,0,sizeof(dp));//初始化dp
        memset(num,0,sizeof(num));
        for(int i = 1; i<=len; i++)
        {

            for(int j = i; j<=len; j++)
            {
                for(int k = i;k<=j;k++){
                    num[i][j]*=10;
                    num[i][j]+=(s[k]-'0');
                }
            }
            dp[i][0] = num[1][i];//初始插入0个乘号时是自己,由小到大累计的基础
        }
        for(int j = 1;j<m;j++){//乘号个数由1~m-1个
            for(int i = 1;i<=len;i++){//结尾坐标(表示长度)
                for(int k = 1;k<i;k++){//分割点插入第j个乘号
                    dp[i][j] = max(dp[i][j],dp[k][j-1]*num[k+1][i]);
                }
            }
        }
        cout<<dp[len][m-1]<<endl;//输出在1~len插入m-1个乘号的结果
    }
    return 0;
}

4. Hdu 4632 最多回文子串

给你一个字符串,求出其最多的可构成的回文字串(不要求连续),注意这里不同的回文字串只要求位置不同即可视为不同,比如 aaaaa 的最多回文子串数目是 31。

        用dp[i][j]表示状态,表示i~j里最多的回文字串数目,假设现在我们要求dp[i][j]。首先由前一个状态知,因为区间尽可能大而且状态要在dp[i][j]之前,而且回文子串不要求连续,所以 dp[i][j] = dp[i+1][j] ∪ dp[i][j-1] ,接着由容斥原理得:dp[i+1][j] ∪ dp[i][j-1] = dp[i+1][j] + dp[i][j-1] - dp[i+1][j] ∩ dp[i][j-1] = dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1]

        注意这是一个固定的状态,每一个状态都由这个公式推出初始状态,是必须且不可选择地。其次,如果s[i] == s[j],那么两端单独就可以构成回文子序列,而且与dp[i+1][j],dp[i][j-1],dp[i+1][j-1] 中的回文序列又可以构成新的回文序列,所以此时dp[i][j] = dp[i+1][j] ∪ dp[i][j-1] + dp[i+1][j-1]  + 1;而dp[i][j]已经更新为 dp[i+1][j] ∪ dp[i][j-1],所以dp[i][j] = dp[i][j] + dp[i+1][j-1] +1

        我们令dp[i][j]表示i~j内最多的回文字串数目,则状态转移方程如下:

            dp[i][j] = \left\{\begin{matrix} dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1],s[i] \neq s[j]\\ dp[i][j]+dp[i+1][j-1]+1,s[i] = s[j] \end{matrix}\right.

        注意这里因为容斥时有减法,所以要先加上模再取模,要不会出现负数。其代码实现如下:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
char s[1005];
int dp[1005][1005];
int main()
{
    int T;
    scanf("%d",&T);
    int t = 0;
    while(T--){
        t++;
        scanf("%s",s+1);
        memset(dp,0,sizeof(dp));
        int len = strlen(s+1);
        for(int i = 1;i<=len;i++)dp[i][i] = 1;//自己是长度为1的
        for(int l = 1;l<=len;l++){
            for(int i = 1;i+l<=len+1;i++){
                int j = i+l-1;//容斥原理 dp[i][j] = dp[i+1][j]并dp[i][j-1] (因为是自序列可以不连续)
                dp[i][j] = (dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1]+10007)%10007;
                if(s[i] == s[j])dp[i][j]=(dp[i][j]+dp[i+1][j-1] + 1)%10007;//如果两端相等,dp[i][j] = 原来的 + 两端与中间每一个回文也可以构成回文(dp[i+1][j-1]) + 两端单独构成一个回文(1)!!!
            }
        }
        printf("Case %d: %d\n",t,dp[1][len]);

    }
    return 0;
}
### 关于面包板电源模块 MB102 的 USB 供电规格及兼容性 #### 1. **MB102 基本功能** 面包板电源模块 MB102 是一种常见的实验工具,主要用于为基于面包板的小型电子项目提供稳定的电压输出。它通常具有两路独立的稳压输出:一路为 5V 和另一路可调电压(一般范围为 3V 至 12V)。这种设计使得它可以满足多种芯片和传感器的不同工作电压需求。 #### 2. **USB 供电方式** MB102 支持通过 USB 接口供电,输入电压通常是标准的 5V DC[^1]。由于其内部集成了 LM7805 稳压器以及可调节电位器控制的直流-直流变换电路,因此即使输入来自电脑或其他低功率 USB 设备,也能稳定地向负载供应电力。不过需要注意的是,如果项目的功耗较高,则可能超出某些 USB 端口的最大电流能力(一般是 500mA),从而引起不稳定现象或者保护机制启动断开连接的情况发生。 #### 3. **兼容性分析** 该型号广泛适用于各种微控制器单元 (MCU),特别是那些像 Wemos D1 R32 这样可以通过杜邦线轻松接入并共享相同逻辑级别的系统[^2]。另外,在提到 Arduino Uno 板时也表明了良好的互操作性,因为两者均采用相似的标准接口定义与电气特性参数设置[^4]: - 对于需要 3.3V 工作环境下的组件来说,只需调整好对应跳线帽位置即可实现精准匹配; - 当涉及到更多外围扩展应用场合下,例如带有多重模拟信号采集任务的情形里,利用 MB102 提供干净无干扰的基础能源供给就显得尤为重要了[^3]。 综上所述,对于打算构建以单片机为核心的原型验证平台而言,选用具备良好声誉记录且易于获取配件支持服务链路上下游资源丰富的品牌产品——如这里讨论过的这款特定类型的配电装置不失为明智之举之一。 ```python # 示例 Python 代码展示如何检测硬件状态 import machine pin = machine.Pin(2, machine.Pin.IN) if pin.value() == 1: print("Power supply is stable.") else: print("Check your connections and power source.") ```
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿阿阿安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值