RWKV入门

主要参考资料
B站视频《【项目原作解读】RWKV Foundation侯皓文:新型RNN模型RWKV,结合Transformer的并行化训练优势和RNN的高效推理》
RWKV官网: https://www.rwkv.com/
RWKV-6 3B(2.5T Tokens)模型于4月18日开源: https://mp.weixin.qq.com/s/DeSTQFRq2DGgF7Kj9XsQPA

前言

RNN无法并行化,Transformer的二次复杂度,RWKV的改善。
请添加图片描述

RWKV由来

RNN的局限是无法进行并行化训练,相较Transformer处于劣势。
请添加图片描述

继《Attention is all you need》横空出世后,针对Transformer的二次Attention,苹果提出AFT的线性Attention,RWKV受苹果启发,提出时间衰减向量的概念。
请添加图片描述

模型架构

一个Embeding Input进入RWKV,首先会进入Time-mixing模块,会跟之前的文本信息进行一次融合。之后是channel-mixing模块,会对每个词的channel进行混合和非线性,增强非线性能力。
在这里插入图片描述

关键结果

在LAMBADA测试集中,RWKV的劣势在参数量小的时候,与Transformer有一定的差距,因为Transformer可以将过去的数据集都拉出来重算一遍。
但是在7B时RWKV已经接近Tranformer,14B时已经不相上下。因此从模型角度RWKV更有优势。
PS:但是GPT-3已经是175B的数据量了。。。
GPT:无所谓,我有钱
在这里插入图片描述

再次重申,RWKV的优越性,时间复杂度更低。
在这里插入图片描述

数据量7B的RWKV至少需要CPU内存12GB 或者 显卡显存9GB。。。
在这里插入图片描述

劣势

RNN的特性,让RWKV在对前文的记忆很差,因此需要精心设计prompt。
在这里插入图片描述

未来展望

(1)RWKV可以进一步提高效率(遗忘是不是更严重?)
(2)增加多模态,现在只是decoder
在这里插入图片描述

### RWKV模型的数据分割与处理方法 RWKV模型是一种基于残差块的神经网络结构,其设计初衷是为了高效处理序列数据,尤其是在自然语言处理领域。然而,对于如何分割RWKV模型或使用RWKV进行数据分割的问题,需要从以下几个方面进行探讨。 #### 1. 数据分割的基本概念 在机器学习中,数据分割通常指将输入数据划分为训练集、验证集和测试集的过程。对于RWKV模型,数据分割的具体实现取决于任务类型和输入数据格式。例如,在自然语言处理任务中,文本数据通常以句子或段落为单位进行分割[^3]。 - **分词**:RWKV模型接受的输入数据格式为文本序列,因此需要对输入文本进行分词处理。分词的目标是将文本分割为单词或子词,以便后续处理。 - **词嵌入**:分词后的单词会被转换为固定维度的向量表示,这一过程称为词嵌入。词嵌入可以使用预训练的词向量(如Word2Vec、GloVe)或通过模型自身学习得到。 - **位置编码**:为了捕捉文本的顺序特征,RWKV模型会在输入层添加位置编码信息。位置编码使得模型能够区分不同位置上的单词。 #### 2. RWKV模型的分割方法 RWKV模型本身并不直接涉及数据分割,但可以通过以下方式实现数据分割: - **时间步分割**:RWKV模型中的每个残差块包含时间混合和通道混合子块,这些子块利用过去的信息进行计算[^1]。因此,可以通过时间步长对序列数据进行分割,确保每个片段包含足够的上下文信息。 - **批量分割**:在训练过程中,数据通常被分割为个批次(batch),每个批次包含一定数量的样本。这种分割方式有助于提高训练效率并减少内存占用。 - **窗口滑动**:对于长序列数据,可以采用窗口滑动技术对其进行分割。窗口小和步长可以根据任务需求进行调整,以平衡计算复杂度和上下文信息的完整性。 #### 3. 使用RWKV进行数据分割的教程 以下是使用RWKV模型进行数据分割的一个简单示例代码: ```python import torch from rwkv_model import RWKVModel # 假设RWKV模型已定义 # 初始化RWKV模型 model = RWKVModel() # 输入数据预处理 text = "This is a sample sentence for data segmentation." tokens = model.tokenize(text) # 分词 embeddings = model.embed(tokens) # 词嵌入 positions = model.add_positional_encoding(embeddings) # 添加位置编码 # 数据分割 def split_data(data, window_size, stride): segments = [] for i in range(0, len(data), stride): segment = data[i:i + window_size] if len(segment) == window_size: # 确保每个片段长度一致 segments.append(segment) return segments window_size = 8 # 示例窗口小 stride = 4 # 示例步长 segments = split_data(positions, window_size, stride) # 模型推理 for segment in segments: output = model(segment) print(output) ``` #### 4. 注意事项 - 在分割数据时,应确保每个片段包含足够的上下文信息,以避免信息丢失。 - 对于长序列数据,可以结合窗口滑动技术和批量分割方法,以提高训练效率。 - 如果任务涉及高分辨率图像处理,可以参考Vision-RWKV(VRWKV)模型的设计思路,利用稀疏输入处理能力降低计算复杂度[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值