冲激函数卷积规律
复习信号与系统关于冲激函数的卷积发现了一个小规律,不知是否正确,记录于此备忘:定义O为某种线性时不变操作算子(包括但不限于叠加如微积分、倍乘、时移等操作),有以下规律:复习信号与系统关于冲激函数的卷积发现了一个小规律,不知是否正确,记录于此备忘:\\
定义O为某种线性时不变操作算子(包括但不限于叠加如微积分、倍乘、时移等操作),\\有以下规律:复习信号与系统关于冲激函数的卷积发现了一个小规律,不知是否正确,记录于此备忘:定义O为某种线性时不变操作算子(包括但不限于叠加如微积分、倍乘、时移等操作),有以下规律:
f(t)∗O{δ(t)}=O{f(t)}
f(t)^{*} O\{\delta(t)\}=\mathrm{O}\{f(t)\}
f(t)∗O{δ(t)}=O{f(t)}
如:如:如:f(t)∗δ(t−t0)=f(t−t0)
f(t)^{*} \delta\left(t-t_{0}\right)=f\left(t-t_{0}\right)
f(t)∗δ(t−t0)=f(t−t0)f(t)∗δ(n)(t−t0)=f(n)(t−t0)
f(t)^{*} \delta^{(n)}\left(t-t_{0}\right)=f^{(n)}\left(t-t_{0}\right)f(t)∗δ(n)(t−t0)=f(n)(t−t0)r(t)=e(t)∗h(t)(对冲激进行求响应操作后与激励卷积即对激励求响应)
r(t)=e(t)^{*} h(t)\\(对冲激进行求响应操作后与激励卷积即对激励求响应)r(t)=e(t)∗h(t)(对冲激进行求响应操作后与激励卷积即对激励求响应)f(t)∗u(t)=∫−∞tf(τ)dτ(u(t)=∫−∞tδ(τ)dτ)f(t)^{*} u(t)=\int_{-\infty}^{t} f(\tau) d \tau\\(u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau)f(t)∗u(t)=∫−∞tf(τ)dτ(u(t)=∫−∞tδ(τ)dτ)
更多内容请关注微信公众号季捡猹长、b站搜索季捡猹长!