冲激函数的卷积规律

冲激函数卷积规律

复习信号与系统关于冲激函数的卷积发现了一个小规律,不知是否正确,记录于此备忘:定义O为某种线性时不变操作算子(包括但不限于叠加如微积分、倍乘、时移等操作),有以下规律:复习信号与系统关于冲激函数的卷积发现了一个小规律,不知是否正确,记录于此备忘:\\ 定义O为某种线性时不变操作算子(包括但不限于叠加如微积分、倍乘、时移等操作),\\有以下规律:O线
f(t)∗O{δ(t)}=O{f(t)} f(t)^{*} O\{\delta(t)\}=\mathrm{O}\{f(t)\} f(t)O{δ(t)}=O{f(t)}
如:如:f(t)∗δ(t−t0)=f(t−t0) f(t)^{*} \delta\left(t-t_{0}\right)=f\left(t-t_{0}\right) f(t)δ(tt0)=f(tt0)f(t)∗δ(n)(t−t0)=f(n)(t−t0) f(t)^{*} \delta^{(n)}\left(t-t_{0}\right)=f^{(n)}\left(t-t_{0}\right)f(t)δ(n)(tt0)=f(n)(tt0)r(t)=e(t)∗h(t)(对冲激进行求响应操作后与激励卷积即对激励求响应) r(t)=e(t)^{*} h(t)\\(对冲激进行求响应操作后与激励卷积即对激励求响应)r(t)=e(t)h(t)f(t)∗u(t)=∫−∞tf(τ)dτ(u(t)=∫−∞tδ(τ)dτ)f(t)^{*} u(t)=\int_{-\infty}^{t} f(\tau) d \tau\\(u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau)f(t)u(t)=tf(τ)dτu(t)=tδ(τ)dτ)

更多内容请关注微信公众号季捡猹长、b站搜索季捡猹长!

### 卷积的概念 卷积是一种用于描述线性时不变 (LTI) 系统输入与输出关系的重要工具。它表示的是一个系统的激励信号 \(x(t)\) 和该系统的单位冲激响应 \(h(t)\) 的相互作用过程[^1]。 具体来说,在连续时间域中,两个函数 \(f_1(t)\) 和 \(f_2(t)\) 的卷积定义如下: \[ (f_1 * f_2)(t) = \int_{-\infty}^\infty f_1(\tau)f_2(t - \tau)d\tau \] 其中,“*”代表卷积运算符。这个表达式表明了如何通过积分来组合这两个函数的时间反转和平移版本。 对于离散时间序列,则有相应的离散形式的卷积公式: ```python y[n] = sum(x[k]*h[n-k], k=-inf to inf) ``` 这里 `y[n]` 是输出序列, 而 `x[k]`, `h[n-k]` 则分别是输入序列及其相对于当前采样点 n 移位后的冲击响应。 ### 卷积的应用场景 当讨论实际应用中的物理系统或者工程设计时,比如滤波器的设计分析、通信信道建模等场合下都会频繁遇到卷积操作。这是因为任何 LTI 系统都可以由其对应的脉冲响应唯一确定,并且任意输入产生的总效果可以通过简单的叠加原理得出——即通过对每一个单独的小片段施加影响再累加起来获得最终的整体表现。 因此,理解并掌握好这一概念不仅有助于深入学习后续更复杂的理论知识体系构建;同时也能够帮助解决许多现实生活当中涉及到动态变化规律探索的实际难题。 ### 计算实例说明 假设我们有一个简单的一阶RC电路作为例子来进行讲解。已知电阻R=1欧姆电容C=1法拉构成串联连接结构下的电压源驱动情况。此时如果给定初始条件以及外部加载的不同形态电流i(t),那么就可以借助上述提到过的卷积技术求解对应时刻节点处所呈现出来的端口特性曲线u_C(t)。 #### Python实现代码示例: 下面给出一段基于Python语言编写用来演示基本数值近似处理流程的一个脚本程序供参考: ```python import numpy as np from scipy import signal import matplotlib.pyplot as plt # 定义时间和频率范围参数 dt = 0.01 T = np.arange(0, 10, dt) # 创建测试用输入信号 x(t)=sin(w*t)+cos(v*t) w,v = 2*np.pi*0.5 , 2*np.pi*2 sig_input = np.sin(w*T) + np.cos(v*T) # 假设某特定硬件设备具有如下所示传递函数 H(s)=(s+a)/(s+b),a<b>0. numerator=[1.,3.] #分子多项式的系数向量形式[a,b] denominator=[1.,4.,3.]#分母多项式的系数向量形式[c,d,e] sys_tf = signal.TransferFunction(numerator, denominator) tout,yout,_statespace_output =signal.lsim(sys_tf,sig_input,T) plt.figure() plt.plot(T, sig_input,'-', T, yout,'--') plt.title('Convolution Example with RC Circuit Model Response') plt.xlabel('Time [seconds]') plt.ylabel('Amplitude ') plt.grid(True) plt.show() ``` 此段代码展示了如何利用SciPy库中的lsim()函数模拟复杂传输特性的行为模式。在这里面包含了完整的设置步骤从建立模型到绘图展示整个环节都涵盖了进去以便于读者更好地理解和实践相关内容知识点。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值