构建一个真正可用的智能体,90% 的工作是软件工程,只有 10% 才是 AI。
Rakesh Gohel 在其著名的AI Agent冰山模型中提出如下结论: AI智能体90%是软件工程,10%是AI。
一、AI智能体生态系统架构
真正的企业级智能体落地并不只是一个能理解自然语言、会自动生成结果的“大模型应用”。
AI 决定智能体“懂不懂”,软件工程决定它“能不能干活”
-
AI 模型只解决“脑子”的问题
通过这个AI脑子实现理解任务、规划步骤、生成内容或结果,这一部分就是“10% AI” -
软件工程支撑智能体的整个“身体和神经系统”
企业级的智能体落地还需要考虑用户交互、权限控制、任务编排、数据流转、工具调用、日志监控、异常回滚的软件工程相关的工作,这些工作是“90% 软件工程”,
二、AI智能体架构内容
在冰山模型中,Rakesh Gohel 指出AI 智能体应用落地的生态系统包含14层,从下到上分别为:CPU/GPU 提供商层、基础设施/基础层、数据库、ETL(提取、加载、转换)层、基础模型层、模型路由层、AI 智能体协议层、AI 智能体编排层、AI 智能体认证层、AI 智能体可观测层、工具层、认证层、记忆层、前端层等。
基于冰山模型理解的智能体架构,可以分为用户可见的AI和支撑智能体运行的软件工程两大组成部分:用户可见的AI和支撑智能体运行的软件工程。
2.1. 用户可见的 AI
-
内容:
自然语言交互、意图理解、文本/代码/报表生成 -
典型体验:
- C端:ChatGPT、文心一言、通义千问、Cursor
- B端:智能工单助手、报销自动审核、代码自动补全
-
核心能力:
- 大模型(LLM)语义理解与生成
- 基础任务规划与工具选择
2.2. 支撑智能体运行的软件工程
智能体架构中部分是企业真正的建设难点,主要包括:
- 2.2.1 基础资源层:算力 & 存储的“地基”
组件 | 选型举例 | 作用 |
---|---|---|
计算节点 | GPU/CPU、NPU、TPU | 训练 + 推理 |
容器化 | Docker + Kubernetes | 秒级扩缩、故障自愈 |
对象存储 | MinIO / AWS S3 | 存放大模型权重、日志 |
消息队列 | Kafka / RabbitMQ | 解耦高并发流数据 |
K8s 的 HPA(水平自动伸缩)能让智能体流量激增时自动“开副本”,流量回落后自动“缩容”省钱
- 2.2.2 数据与模型层:让 LLM “吃得好、吃得稳”
任务 | 关键技术 | 开源/商用示例 |
---|---|---|
数据 ETL | Airflow、Spark | 碎片化 → 标准化 |
语义缓存 | Redis + Embedding | 相同问题直接命中,减少 30 % 调用 |
向量数据库 | Milvus / Pinecone | 长记忆、相似问答 |
模型路由 | Model Mesh、KServe | 按成本/延迟动态挑模型 |
- 2.2.3 运行时核心:Agent 的“大脑+小脑+神经”
模块 | 职责 | 技术要点 |
---|---|---|
感知 | 输入解析 | WebSocket、Webhook、API Gateway |
推理 | LLM 调用 | Prompt 模板、Function Calling |
记忆 | 上下文保持 | 向量检索 + 会话状态持久化 |
执行 | 工具调用 | LangGraph 节点编排、RPA/API 适配 |
安全 | AuthZ/AuthN | SSO、JWT、OAuth2、审计日志 |
LangGraph 把“工具-模型-人”画成一张图,节点是动作,边是条件跳转,支持循环、并行、甚至人机回圈
- 2.2.4 编排 & 调度:多智能体“协同作战”
场景 | 技术方案 | 典型案例 |
---|---|---|
多 Agent 协作 | MCP / A2A 协议 | 采购 Agent 询价 → 法务 Agent 审合同 → 财务 Agent 付款 |
分布式任务队列 | Celery + Redis | 长任务异步化,避免前端超时 |
事件驱动 | CloudEvents + Knative | 无服务器事件触发,按需计费 |
- 2.2.5 DevOps & 可观测:让“黑盒”变“白盒”
维度 | 工具链示例 | 关键指标 |
---|---|---|
日志 | ELK / Loki + Grafana | Token 消耗、异常栈追踪 |
链路追踪 | Jaeger / SkyWalking | 一次对话的完整耗时分布 |
监控告警 | Prometheus + Alertmanager | GPU 利用率>90 % 自动扩容 |
灰度发布 | Argo CD + Flagger | 新 Prompt 先 5 % 流量 A/B 测 |
- 2.2.6 低代码 & 平台化:把 90 % 的工程“产品化”
平台 | 亮点 | 适用场景 |
---|---|---|
Coze | 拖拽式工作流 + AST 实时编译 | 企业客服、营销 Bot |
腾讯云 TI 平台 | 千卡级分布式训练 + 一键部署 | 能源、金融大模型 |
数商云 | 微服务 + 容器化交付 | 电商、政务快速落地 |
三、企业如何实现AI智能体落地
- 不要高估AI能力
只关注模型而忽视工程建设,智能体很快失效或不可控
- 智能体是软件系统
把智能体当作软件系统,而不是单个模型
先规划好 Workflow、权限、数据、日志、工具集成
- 团队建设需要软件工程方向
90% 的工作需要软件工程、架构、运维人才
只有 10% 是 Prompt、模型微调或推理优化
- 必须重视B端落地、而非C端快跑
C端重体验,轻工程,冰山顶部就能跑 MVP
B端重交付,必须把冰山底部的 90% 建完整
四、智能体落地实践(电商)
4.1 工具与材料清单
我们需要准备“开发工具箱”,通过开源工具和平台,能帮你跳过复杂的底层代码,直接“搭积木”。
4.1.1 必装工具:
-
Python环境
AI开发的通用语言,推荐安装Anaconda,自带常用库; -
VS Code
代码编辑器,界面友好,支持AI智能补全; -
OpenAI/Deepseek账号
需注册并申请API Key才能用GPT系列模型,,新手可先用免费额度测试。
4.1.4 开源平台
-
LangChain
开源框架,快速连接大模型与外部工具,比如调用搜索引擎、数据库等; -
AutoGPT
更“智能”的框架,支持AI自主规划任务; -
Hugging Face
-
开源模型库,可直接调用LLaMA、百川等免费模型。
4.1.3 数据准备
如果智能体需要“个性化知识”:比如企业内部文档、个人笔记,需要提前整理成结构化的文本(如Excel、TXT,PDF),后续需要导入模型“训练”或“记忆”。
4.2 智能体流程搭建
用LangChain搭建“感知-决策-执行”流程,LangChain就像“胶水”,能把模型、工具、记忆粘在一起。我们用它实现“读取链接→提取内容→生成摘要”。
4.3 测试与调优
测试和调优主要需要考虑如下的方面:
-
链接无效时:是否返回“链接无效”提示?(可能需要在代码中添加异常处理);
-
长文本摘要:是否遗漏关键信息?(可调整temperature参数,或限制模型输出长度);
-
口语化程度:是否太生硬?(修改提示词,比如加一句“用像朋友聊天一样的语气”)。
4.4 部署上线
可以部署到云端(如免费的Replit、PythonAnywhere),或封装成微信小程序。
- Replit方式:上传代码,点击“运行”,生成一个可访问的URL,通过这个URL,就可以调用你的AI助手啦!