lGBM(LightGBM)

lGBM 概念

lGBM(LightGBM)是一种基于决策树算法的梯度提升框架,由Microsoft开发。它是一种高效、快速的梯度提升树(Gradient Boosting Decision Tree, GBDT)实现,旨在用于处理大规模数据集,并解决传统GBDT算法在效率和速度上的不足。

lGBM 原理

lGBM的核心思想是通过使用梯度提升树来最小化损失函数。它采用了以下几种技术来提高效率:

  1. 直方图算法:使用直方图来代替传统的预排序方法,减少内存使用并加速训练。
  2. 带深度限制的叶子生长:通过限制树的最大深度来防止过拟合。
  3. 类别特征的最佳分割:利用类别特征的信息增益来优化分裂点选择。
  4. 并行和GPU加速:支持并行计算和GPU加速来提升训练速度。

步骤

  1. 初始化:使用一个常数或基于训练数据的初始模型。
  2. 迭代
    • 计算负梯度,代表当前模型的残差。
    • 使用当前负梯度作为目标变量来训练一个新的决策树。
    • 更新模型,将新训练的决策树乘以学习率后加到模型上。
  3. 停止条件:达到预定的迭代次数或满足特定的性能指标。

分类

lGBM不是一种分类算法,而是一种框架,可以用于分类、回归以及排序任务。

用途

lGBM常用于机器学习竞赛、推荐系统、金融风控、异常检测等领域,特别是在需要处理大规模数据集时。

Python代码详细实现

以下是一个使用Python和LightGBM库实现二分类任务的例子,并附有注释。

import lightgbm as lgb
from sklearn.datasets 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值