1. 题号和题目名称
377.组合总和 Ⅳ
2. 题目叙述
给你一个由不同整数组成的数组 nums
,和一个目标整数 target
。请你从 nums
中找出并返回总和为 target
的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
示例 1:
输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。
示例 2:
输入:nums = [9], target = 3
输出:0
3. 模式识别
本题可通过动态规划来解决。因为要计算达到目标值 target
的组合个数,且不同顺序的组合被视为不同的情况,动态规划可以避免重复计算子问题,通过保存中间结果来提高效率。
4. 考点分析
- 动态规划思想:将大问题分解为小问题,通过求解小问题的解来得到大问题的解。
- 状态定义和转移方程:需要准确地定义状态和推导状态转移方程。
- 边界条件处理:正确处理动态规划中的边界条件。
5. 所有解法
- 暴力递归:枚举所有可能的组合,时间复杂度是指数级的,会有大量的重复计算。
- 动态规划:通过保存中间结果,避免重复计算,提高效率。
6. 最优解法(动态规划)的 C 语言代码
// 深度优先搜索函数,用于计算达到目标值 i 的组合数量
// i: 当前要达到的目标值
// nums: 包含可选数字的数组
// numsSize: 数组 nums 的长度
// memo: 记忆化数组,用于存储已经计算过的结果
int dfs(int i, int* nums, int numsSize, int* memo) {