MA滑动平均模型

本文详细介绍了移动平均模型(MA模型)的定义,它不同于AR模型,是基于历史白噪声的线性组合。MA模型保证了平稳性,并具有常数均值和方差。自相关函数和自相关系数具有特定形式,可用于模型定阶。预测部分说明了MA模型的预测性质,即在一定步数后预测值达到均值。内容涵盖了模型统计性质、预测方法和实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARARAR模型不同,MAMAMA模型并非是历史时序值的线性组合,而是历史白噪声的线性组合,移动平均过程总是平稳的,因为它是白噪声的线性组合。

{xt=μ+εt−∑i=1qθiεt−iθq≠0E(εt)=0,Var(εt)=σ2,E(εtεs)=0,s≠t \left\{ \begin{aligned} & x_t = \mu + \varepsilon_t - \sum_{i=1}^q \theta_{i} \varepsilon_{t-i} \\ & \theta_q \neq 0 \\ & E(\varepsilon_t)=0,Var(\varepsilon_t)=\sigma^2,E(\varepsilon_t \varepsilon_s)=0,s\neq t \\ \end{aligned} \right. xt=μ+εti=1qθiεtiθq=0E(εt)=0,Var(εt)=σ2,E(εtεs)=0,s=t
限制条件

  • θq≠0\theta_q \neq 0θq=0,确保模型的最高阶数为qqq
  • E(εt)=0,Var(εt)=σ2,E(εtεs)=0,s≠tE(\varepsilon_t)=0,Var(\varepsilon_t)=\sigma^2,E(\varepsilon_t \varepsilon_s)=0,s\neq tE(εt)=0,Var(εt)=σ2,E(εtεs)=0,s=t,保证随机序列为白噪声序列。

通常默认限制条件,模型简记为:
xt=μ+εt−∑i=1qθiεt−i x_t = \mu + \varepsilon_t - \sum_{i=1}^q \theta_{i} \varepsilon_{t-i} xt=μ+εti=1qθiεti

统计性质

  • 常数均值

E(xt)=E(μ+εt−∑i=1qθiεt−i)=E(μ)+E(εt)−∑i=1qθiE(εt−i)=μ \begin{aligned} E(x_t) &= E(\mu + \varepsilon_t - \sum_{i=1}^q \theta_{i} \varepsilon_{t-i}) \\ &= E(\mu) + E(\varepsilon_t) - \sum_{i=1}^q \theta_i E(\varepsilon_{t-i}) \\ &= \mu \end{aligned} E(xt)=E(μ+εti=1qθiεti)=E(μ)+E(εt)i=1qθiE(εti)=μ

  • 常数方差

Var(xt)=Var(μ+εt−∑i=1qθiεt−i)=Var(μ)+Var(εt)+∑i=1qθi2Var(εt−i)=1+∑i=1qθiσ2 \begin{aligned} Var(x_t) &= Var(\mu + \varepsilon_t - \sum_{i=1}^q \theta_{i} \varepsilon_{t-i}) \\ &= Var(\mu) + Var(\varepsilon_t) + \sum_{i=1}^q \theta_i^2 Var(\varepsilon_{t-i}) \\ &= 1 + \sum_{i=1}^q \theta_i \sigma^2 \end{aligned} Var(xt)=Var(μ+εti=1qθiεti)=Var(μ)+Var(εt)+i=1qθi2Var(εti)=1+i=1qθiσ2

  • 自协方差函数只与滞后阶数相关,且qqq阶截尾

    γk=E(xtxt−k)={1+∑i=1qθi2σε2,k=0(−θk+∑i=1q−kθiθk+i)σε2,1≤k≤q0,k>q \gamma_k = E(x_t x_{t-k})=\left\{ \begin{aligned} & 1 + \sum_{i=1}^q \theta_i^2 \sigma_{\varepsilon}^2, &k =0 \\ & (-\theta_k + \sum_{i=1}^{q-k}\theta_i \theta_{k+i}) \sigma_{\varepsilon}^2, &1 \le k \le q \\ & 0,&k>q \end{aligned} \right. γk=E(xtxtk)=1+i=1qθi2σε2,(θk+i=1qkθiθk+i)σε2,0,k=01kqk>q

  • 自相关系数qqq阶截尾
    ρk=γkγ0={1,k=0(−θk+∑i=1q−kθiθk+i)1+∑i=1qθi2,1≤k≤q0,k>q \rho_k = \frac{\gamma_k}{\gamma_0}=\left\{ \begin{aligned} & 1 , &k =0 \\ & \frac{(-\theta_k + \sum_{i=1}^{q-k}\theta_i \theta_{k+i})}{1+\sum_{i=1}^q \theta_i^2}, &1 \le k \le q \\ & 0,&k>q \end{aligned} \right. ρk=γ0γk=1,1+i=1qθi2(θk+i=1qkθiθk+i),0,k=01kqk>q

定阶

qqqMAMAMA模型的自相关系数是qqq阶截尾的,这意味着可以通过计算样本自相关系数来确定MAMAMA模型的阶数。
ACF

预测

设预测原点为hhhFhF_hFh为在hhh时刻所能获得的信息集,x^h(l)\hat{x}_h(l)x^h(l)表示在hhh时刻向前lll步预测,εh(l)\varepsilon_{h}(l)εh(l)表示预测误差。
xh+l=μ+εh+l−∑i=1qθiεh+l−ix^h(l)=μ−∑i=1qθiEεh+l−i \begin{aligned} x_{h+l} &= \mu + \varepsilon_{h+l}- \sum_{i=1}^q \theta_i \varepsilon_{h+l-i}\\ \hat{x}_h(l) &= \mu - \sum_{i=1}^q \theta_i E\varepsilon_{h+l-i} \end{aligned} xh+lx^h(l)=μ+εh+li=1qθiεh+li=μi=1qθiEεh+li

Eεh+l−i={0,l−i>0εh+l−i,l−i≤0 E \varepsilon_{h+l-i}=\left\{ \begin{aligned} & 0 , & l-i > 0 \\ & \varepsilon_{h+l-i}, & l - i \le 0\\ \end{aligned} \right. Eεh+li={0,εh+li,li>0li0

解释h+t(t>0)h+t(t>0)h+t(t>0)时刻的随机干扰误差是未知的,根据其假定白噪声条件有E(εh+t)=0E(\varepsilon_{h+t})=0E(εh+t)=0,而当前时刻hhh及其之前时刻的随机误差是已知的,因此E(εh+tt<=0)=εhE(\varepsilon_{h+t} t <=0)=\varepsilon_{h}E(εh+tt<=0)=εh

性质:对于一个MA(q)MA(q)MA(q)模型,向前qqq步以后的预测就达到了模型的均值。


王燕.应用时间序列分析[M].中国人民大学出版社.201907

微信公众号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值