与ARARAR模型不同,MAMAMA模型并非是历史时序值的线性组合,而是历史白噪声的线性组合,移动平均过程总是平稳的,因为它是白噪声的线性组合。
{xt=μ+εt−∑i=1qθiεt−iθq≠0E(εt)=0,Var(εt)=σ2,E(εtεs)=0,s≠t
\left\{
\begin{aligned}
& x_t = \mu + \varepsilon_t - \sum_{i=1}^q \theta_{i} \varepsilon_{t-i} \\
& \theta_q \neq 0 \\
& E(\varepsilon_t)=0,Var(\varepsilon_t)=\sigma^2,E(\varepsilon_t \varepsilon_s)=0,s\neq t \\
\end{aligned}
\right.
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧xt=μ+εt−i=1∑qθiεt−iθq=0E(εt)=0,Var(εt)=σ2,E(εtεs)=0,s=t
限制条件
- θq≠0\theta_q \neq 0θq=0,确保模型的最高阶数为qqq;
- E(εt)=0,Var(εt)=σ2,E(εtεs)=0,s≠tE(\varepsilon_t)=0,Var(\varepsilon_t)=\sigma^2,E(\varepsilon_t \varepsilon_s)=0,s\neq tE(εt)=0,Var(εt)=σ2,E(εtεs)=0,s=t,保证随机序列为白噪声序列。
通常默认限制条件,模型简记为:
xt=μ+εt−∑i=1qθiεt−i
x_t = \mu + \varepsilon_t - \sum_{i=1}^q \theta_{i} \varepsilon_{t-i}
xt=μ+εt−i=1∑qθiεt−i
统计性质
- 常数均值
E(xt)=E(μ+εt−∑i=1qθiεt−i)=E(μ)+E(εt)−∑i=1qθiE(εt−i)=μ \begin{aligned} E(x_t) &= E(\mu + \varepsilon_t - \sum_{i=1}^q \theta_{i} \varepsilon_{t-i}) \\ &= E(\mu) + E(\varepsilon_t) - \sum_{i=1}^q \theta_i E(\varepsilon_{t-i}) \\ &= \mu \end{aligned} E(xt)=E(μ+εt−i=1∑qθiεt−i)=E(μ)+E(εt)−i=1∑qθiE(εt−i)=μ
- 常数方差
Var(xt)=Var(μ+εt−∑i=1qθiεt−i)=Var(μ)+Var(εt)+∑i=1qθi2Var(εt−i)=1+∑i=1qθiσ2 \begin{aligned} Var(x_t) &= Var(\mu + \varepsilon_t - \sum_{i=1}^q \theta_{i} \varepsilon_{t-i}) \\ &= Var(\mu) + Var(\varepsilon_t) + \sum_{i=1}^q \theta_i^2 Var(\varepsilon_{t-i}) \\ &= 1 + \sum_{i=1}^q \theta_i \sigma^2 \end{aligned} Var(xt)=Var(μ+εt−i=1∑qθiεt−i)=Var(μ)+Var(εt)+i=1∑qθi2Var(εt−i)=1+i=1∑qθiσ2
-
自协方差函数只与滞后阶数相关,且qqq阶截尾
γk=E(xtxt−k)={1+∑i=1qθi2σε2,k=0(−θk+∑i=1q−kθiθk+i)σε2,1≤k≤q0,k>q \gamma_k = E(x_t x_{t-k})=\left\{ \begin{aligned} & 1 + \sum_{i=1}^q \theta_i^2 \sigma_{\varepsilon}^2, &k =0 \\ & (-\theta_k + \sum_{i=1}^{q-k}\theta_i \theta_{k+i}) \sigma_{\varepsilon}^2, &1 \le k \le q \\ & 0,&k>q \end{aligned} \right. γk=E(xtxt−k)=⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧1+i=1∑qθi2σε2,(−θk+i=1∑q−kθiθk+i)σε2,0,k=01≤k≤qk>q
-
自相关系数qqq阶截尾
ρk=γkγ0={1,k=0(−θk+∑i=1q−kθiθk+i)1+∑i=1qθi2,1≤k≤q0,k>q \rho_k = \frac{\gamma_k}{\gamma_0}=\left\{ \begin{aligned} & 1 , &k =0 \\ & \frac{(-\theta_k + \sum_{i=1}^{q-k}\theta_i \theta_{k+i})}{1+\sum_{i=1}^q \theta_i^2}, &1 \le k \le q \\ & 0,&k>q \end{aligned} \right. ρk=γ0γk=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧1,1+∑i=1qθi2(−θk+∑i=1q−kθiθk+i),0,k=01≤k≤qk>q
定阶
qqq阶MAMAMA模型的自相关系数是qqq阶截尾的,这意味着可以通过计算样本自相关系数来确定MAMAMA模型的阶数。
预测
设预测原点为hhh,FhF_hFh为在hhh时刻所能获得的信息集,x^h(l)\hat{x}_h(l)x^h(l)表示在hhh时刻向前lll步预测,εh(l)\varepsilon_{h}(l)εh(l)表示预测误差。
xh+l=μ+εh+l−∑i=1qθiεh+l−ix^h(l)=μ−∑i=1qθiEεh+l−i
\begin{aligned}
x_{h+l} &= \mu + \varepsilon_{h+l}- \sum_{i=1}^q \theta_i \varepsilon_{h+l-i}\\
\hat{x}_h(l) &= \mu - \sum_{i=1}^q \theta_i E\varepsilon_{h+l-i}
\end{aligned}
xh+lx^h(l)=μ+εh+l−i=1∑qθiεh+l−i=μ−i=1∑qθiEεh+l−i
Eεh+l−i={0,l−i>0εh+l−i,l−i≤0 E \varepsilon_{h+l-i}=\left\{ \begin{aligned} & 0 , & l-i > 0 \\ & \varepsilon_{h+l-i}, & l - i \le 0\\ \end{aligned} \right. Eεh+l−i={0,εh+l−i,l−i>0l−i≤0
解释:h+t(t>0)h+t(t>0)h+t(t>0)时刻的随机干扰误差是未知的,根据其假定白噪声条件有E(εh+t)=0E(\varepsilon_{h+t})=0E(εh+t)=0,而当前时刻hhh及其之前时刻的随机误差是已知的,因此E(εh+tt<=0)=εhE(\varepsilon_{h+t} t <=0)=\varepsilon_{h}E(εh+tt<=0)=εh。
性质:对于一个MA(q)MA(q)MA(q)模型,向前qqq步以后的预测就达到了模型的均值。
王燕.应用时间序列分析[M].中国人民大学出版社.201907