1 超参数优化
调参即超参数优化,是指从超参数空间中选择一组合适的超参数,以权衡好模型的偏差(bias)和方差(variance),从而提高模型效果及性能。常用的调参方法有:
- 人工手动调参
- 网格/随机搜索(Grid / Random Search)
- 贝叶斯优化(Bayesian Optimization)
注:超参数 vs 模型参数差异
超参数是控制模型学习过程的(如网络层数、学习率);
模型参数是通过模型训练学习后得到的(如网络最终学习到的权重值)。
2 人工调参
手动调参需要结合数据情况及算法的理解,优化调参的优先顺序及参数的经验值。
不同模型手动调参思路会有差异,如随机森林是一种bagging集成的方法,参数主要有n_estimators(子树的数量)、max_depth(树的最大生长深度)、max_leaf_nodes(最大叶节点数)等。(此外其他参数不展开说明)
对于n_estimators:通常越大效果越好。参数越大,则参与决策的子树越多,可以消除子树间的随机误差且增加预测的准度,以此降低方差与偏差。
对于max_depth或max_leaf_nodes:通常对效果是先增后减的。取值越大则子树复杂度越高,偏差越低但方差越大。