22 TKDE SAGES: Scalable Attributed Graph Embedding with Sampling for Unsupervised Learning

这篇博客介绍了SAGES模型,它结合了无偏采样技术和图嵌入方法,如GraphSAINT和DGI,用于解决图数据的无监督学习。模型通过重构损失(邻接矩阵和特征矩阵)以及互信息来捕获图结构和特征信息。文章讨论了采样可能对结构的影响,并提出了解决方案。实验部分展示了模型在节点分类、聚类等任务上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

talk

这篇文章没有什么特别新颖的,一作是北大的硕士,查询过程中好像没有其他工作,18年硕士,文章采用重构损失(A,X)+互信息。 主要看点:graphsaint在图采样上的实现,不是利用 pytorch_geometry

model

总体上 来说 : 采样graphsaint来进行无偏采样,之后对采样后的子图进行对比学习(DGI)
在这里插入图片描述

损失

1. A的重构损失(GAE常用)

在这里插入图片描述

2. 特征矩阵X的重构损失

作者声称 采样 会破坏结构,因此邻接矩阵重构不一定充分,这里考虑重构特征矩阵。
和ARGAX里面不同的是,这里采用 attention

分三步

latent Z和 Watt相乘 非线性激活后和vs向量乘 获得一个 attention向量
这个向量和 At进行哈达玛积 形成 Ms
Mr同理,两者求和后激活softmax 形成C,C和X 通过14 来形成decoder

这里还是有点维度问题不明白 Ct和 Zt 能形成 X重构的X’吗? 看代码再说

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值