talk
这篇文章没有什么特别新颖的,一作是北大的硕士,查询过程中好像没有其他工作,18年硕士,文章采用重构损失(A,X)+互信息。 主要看点:graphsaint在图采样上的实现,不是利用 pytorch_geometry
model
总体上 来说 : 采样graphsaint来进行无偏采样,之后对采样后的子图进行对比学习(DGI)
损失
1. A的重构损失(GAE常用)
2. 特征矩阵X的重构损失
作者声称 采样 会破坏结构,因此邻接矩阵重构不一定充分,这里考虑重构特征矩阵。
和ARGAX里面不同的是,这里采用 attention
分三步
latent Z和 Watt相乘 非线性激活后和vs向量乘 获得一个 attention向量
这个向量和 At进行哈达玛积 形成 Ms
Mr同理,两者求和后激活softmax 形成C,C和X 通过14 来形成decoder