OpenCV中的光流及视频特征点追踪
这篇博客将介绍光流的概念以及如何使用 Lucas-Kanade 方法估计光流,并演示如何使用 cv2.calcOpticalFlowPyrLK() 来跟踪视频中的特征点。
1. 效果图
光流追踪效果图如下:
它显示了一个球在连续 5 帧中移动。箭头表示其位移矢量。
不是很严谨的——稀疏光流特征点追踪效果图如下:
它追踪了视频中多个车的主驾驶、副驾驶,以及行人的边缘角点的轨迹:
此代码不检查下一个关键点的正确程度。因此即使图像中的任何特征点消失,光流也有可能找到下一个看起来可能靠近它的点。对于稳健的跟踪,角点应该在特定的时间间隔内检测点。
过程图其一如下:
优化版的——稀疏