剑指offer10:斐波那契数列(递归/非递归)

这篇博客介绍了斐波那契数列的两种常见算法:递归和非递归解法。递归解法虽然直观,但存在大量重复计算,时间复杂度为O(2^n)。非递归解法则避免了重复计算,时间复杂度为O(n),效率更高。

(一)题目描述

题目一:求斐波那契数列的第n项。

(二)思路分析

求解斐波那契数列有两种常用的算法:递归算法和非递归算法。

算法一:递归解法。我们以求解F(10)为例来分析递归的求解过程。想求得F(10),需要先求的F(9)和F(8)。同样,想求得F(9),需要先求得F(8)和F(7)......依次类推,直至必须先计算F(1)和F(0),然后逆推得到F(n-1)和F(n-2)的结果,从而得到F(n)要计算很多重复的值,在时间上造成了很大的浪费,算法的时间复杂度随着N的增大呈现指数增长,时间的复杂度为O(2^n),即2的n次方。

#include<iostream>
using namespace std;

class Solution {
public:
	int Fibonacci(int n) {
		if (n == 0)
		{
			return 0;
		}
		else if (n == 1)
		{
			return 1;
		}
		else
		{
			return Fibonacci(n - 1) + Fibonacci(n - 2);
		}
	}
};

int main()
{
	Solution sol;
	cout<<sol.Fibonacci(10)<<endl;   //55

	return 0;
}

 

算法二:非递归解法。即反向递归的思想。从前向后计算,先根据f(0)、f(1)计算出f(2),再根据f(1)、f(2)计算出f(3)。依次类推,这样就避免了大量的重复计算,它的效率比递归算法快得多,算法的时间复杂度与n成正比,即时间复杂度O(n)。

class Solution {
public:
    int Fibonacci(int n) {
        if(n < 2) return n;
        else
        {
            int fibOne = 0;
            int fibTwo = 1;
            int fibN = 0;
            for(int i=2; i<=n; i++)
            {
                fibN = fibOne + fibTwo;
                fibOne = fibTwo;
                fibTwo = fibN;
            }
            return fibN;
        }
    }
};

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值