Python numpy使用记录1.数组计算的broadcasting机制

Python numpy使用记录1.数组的broadcast机制

前言

本篇开始记录一些使用numpy时的技巧。numpy事实上已经成为了python的数据处理包。

不过有的numpy操作不大好理解,也容易遗忘。这里的记录是为了增加记忆。

numpy数组计算

首先记录一下numpy数组的基础。

numpy的基本数据结构是np.ndarray,是多维的张量,np.ndarray由标量构成。numpy的标量与python内置的数据类型可以混用,不过python的数字标量分为整型与浮点型,而numpy则把整型细分为np.int8, np.uint8, np.int32等,浮点型细分为np.float32, np.float64等,此外还有np.bool, np.str_等类型。

np.ndarray的几个比较重要的信息为:ndim维度,shape形状,size元素个数,dtype数据类型。其中维度等于形状的长度,元素个数等于每个维度的乘积。

可以通过np.array()将python scalar, list, tuple等转换成np.ndarray

import numpy as np
# 从list创建数据类型为np.int32的np.ndarray
a = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.int32)
print(a.ndim<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值