Python numpy使用记录1.数组的broadcast机制
前言
本篇开始记录一些使用numpy时的技巧。numpy事实上已经成为了python的数据处理包。
不过有的numpy操作不大好理解,也容易遗忘。这里的记录是为了增加记忆。
numpy数组计算
首先记录一下numpy数组的基础。
numpy的基本数据结构是np.ndarray
,是多维的张量,np.ndarray
由标量构成。numpy的标量与python内置的数据类型可以混用,不过python的数字标量分为整型与浮点型,而numpy则把整型细分为np.int8, np.uint8, np.int32
等,浮点型细分为np.float32, np.float64
等,此外还有np.bool, np.str_
等类型。
np.ndarray
的几个比较重要的信息为:ndim
维度,shape
形状,size
元素个数,dtype
数据类型。其中维度等于形状的长度,元素个数等于每个维度的乘积。
可以通过np.array()
将python scalar, list, tuple等转换成np.ndarray
import numpy as np
# 从list创建数据类型为np.int32的np.ndarray
a = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.int32)
print(a.ndim<