pytorch: hook机制,取网络层的输入输出和梯度
前言
本篇记录在pytorch中,通过hook机制将网络某层的输入输出和梯度取出。
pytorch的hook机制
hook是pytorch中一个独特的机制,可以用于将变量的梯度、网络层的输入输出和梯度“钩出来”保存和修改。
使用hook流程:首先定义hook函数对梯度或者输入输出的操作,然后register到变量或者网络层,最后对网络推理或者变量反向传播激活hook函数生效,去除hook。
register_hook用于变量梯度操作
register_hook
接收的hook函数只包含变量梯度这一个参数:
import torch
def hook_function(grad):
grad += 1
a = torch.tensor([1, 1, 1], requires_grad=True, dtype=torch.float32)
b = a.mean()
h = a.register_hook(hook_function)
b.backward()
print(b.grad) # tensor([1.333, 1.333, 1.333])
h.remove()
尽量不要通过register_hook
修改变量梯度。如果要取出变量梯度,可以定义全局变量然后把grad赋过去。