最优传输论文(八):Optimal Transport for Multi-source Domain Adaptation under Target Shift论文原理

本文深入探讨了最优传输在处理多源域自适应问题时面临的目标转移(Target Shift)挑战,强调了Label Shift在实际应用中的重要性。文章提出JCPOT算法,通过学习目标样本类别概率并调整源域分布,解决类别比例差异,适用于没有标签的目标样本。实验表明,JCPOT在多源域自适应中展现出良好的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

  • 本文属于我最优传输系列里的八篇,该专栏用于记录本人研究生阶段相关最优传输论文的原理阐述以及复现工作。
  • 本专栏的文章主要内容为解释原理,论文具体的翻译及复现代码在文章的github中。

原理阐述

摘要

  • 在本文中,我们解决了减少多个域之间差异的问题,即多源域自适应,并在目标转移假设下考虑:在所有域中,我们旨在解决具有相同输出类但具有不同标签比例的分类问题。从名字就可以看出target shift嘛,也就是Prior Shift,也就是Label Shift。
    在这里插入图片描述
    Label Shift就是条件概率部分相同、输入的边缘概率分布相同,然后输出的边缘概率分布不同(也就是先验概率不同)。
  • 这个问题在绝大多数领域适应论文中被普遍忽略,但在现实应用中却至关重要,我们从理论上说明了它对适应成功的影响。
  • 本篇文章引出的方法,JCPOT,通过学习未标记目标样本的类别概率和允许对齐两个(或更多)概率分布的耦合,同时执行多源自适应和目标偏移校正。

介绍

  • 文章发表于2019年的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值