详细介绍Covariate Shift问题

CovariateShift是指在机器学习中,训练数据和测试数据的输入分布不一致,导致模型在不同分布的数据上表现不稳定。在内部,每次迭代的反向传播也会引起神经网络输出数据分布的变化,称为InternalCovariateShift。在迁移学习的CovariateShift场景下,源域和目标域的边缘概率分布不同,但条件概率分布相同。了解这一概念对于优化模型泛化能力至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是Covariate Shift

  • 在普通的深度学习或机器学习任务中,宏观上讲,Covariate Shift是指模型的输入数据和测试数据来自不同的分布;微观上讲,Covariate Shift是指,每次迭代模型都会经过反向传播调整参数,这样就使得每次迭代,神经网络各个层的输出数据分布都是变化的,这就导致神经网络参数要进行相应的调整从而拟合新的数据分布,疲于奔命。这又被称为Internal Covariate Shift。
  • 在迁移学习中,Covariate Shift的情况下,源域和目标域的边缘概率分布是不同的,而条件概率分布是相同的,即 P s ( x ) ! = P t ( x ) P_s(x)!=P_t(x) Ps(x)!=Pt(x) P s ( x ∣ y ) = P t ( x ∣ y ) P_s(x|y)=P_t(x|y) Ps(xy)=Pt(xy)

例子

  • 这里有两篇博客帮助理解:
    https://zhuanlan.zhihu.com/p/26352087
    https://blog.csdn.net/mao_xiao_feng/article/details/54317852
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值