题目大意
给你两个非负整数数组 rowSum 和 colSum ,其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素,但是你知道每一行和每一列的和。
请找到大小为 rowSum.length x colSum.length 的任意 非负整数 矩阵,且该矩阵满足 rowSum 和 colSum 的要求。
请你返回任意一个满足题目要求的二维矩阵,题目保证存在 至少一个 可行矩阵。
输入:rowSum = [3,8], colSum = [4,7]
输出:[[3,0],
[1,7]]
解释:
第 0 行:3 + 0 = 0 == rowSum[0]
第 1 行:1 + 7 = 8 == rowSum[1]
第 0 列:3 + 1 = 4 == colSum[0]
第 1 列:0 + 7 = 7 == colSum[1]
行和列的和都满足题目要求,且所有矩阵元素都是非负的。
另一个可行的矩阵为:[[1,2],
[3,5]]
输入:rowSum = [5,7,10], colSum = [8,6,8]
输出:[[0,5,0],
[6,1,0],
[2,0,8]]
输入:rowSum = [14,9], colSum = [6,9,8]
输出:[[0,9,5],
[6,0,3]]
输入:rowSum = [1,0], colSum = [1]
输出:[[1],
[0]]
解题思路
假设输出矩阵为ans,从左上角开始遍历ans,尽可能让当前位置的元素最大化,并不断更新rowSum colSum。
举个例子:
rowSum = [3,8], colSum = [4,7]。
ans[[0][0]最大为3,因为第一行的总和为3,列和为4,所以ans[0][0]不可能超过3. 我们将3放在ans[0][0]位置,因此rowSum = [0,8], colSum = [1,7];
ans[0][1]最大为0(因为rowSum[0]=0),此时rowSum = [0,8], colSum = [1,7]不变;
ans[1][0]最大为1,此时rowSum = [0,7], colSum = [0,7];
ans[1][1]最大为7,此时rowSum = [0,0], colSum = [0,0];
计算结束;
class Solution{
public:
vector<vector<int>> restoreMatrix(vector<int> & rowSum, vector<int> & colSum){
int row = rowSum.size(), col = colSum.size();
vector<vector<int>> ans(row, vector<int>(col, 0));
for (int i = 0; i < row; ++i){
for (int j = 0; j < col; ++j){
if (rowSum[i] < colSum[j]){
ans[i][j] = rowSum[i];
colSum[j] -= rowSum[i];
rowSum[i] = 0;
}else{
ans[i][j] =colSum[j];
rowSum[i] -= colSum[j];
colSum[j] = 0;
}
}
}
return ans;
}
};