- 数据质量
数仓模型的数据必须准确,能够真实反映业务情况。数据质量包括数据的准确性、完整性、一致性、精确性、可靠性和时效性等方面。
准确性:确保数据的准确无误,没有错误或偏差。这包括检查数据值是否符合预期的范围、格式和逻辑规则。
完整性:保证数据的完整,没有缺失关键的信息或字段。例如,检查必填字段是否都有值,相关联的数据表之间的关联完整性是否得到维护。
一致性:数据在不同的系统、数据表或业务流程中应该保持一致。例如,同一客户在不同表中的信息应该一致。
时效性:数据要及时更新,以反映最新的业务状态。监控数据的更新频率是否满足业务需求。
合理性:数据应在合理的范围内,不存在异常或不合理的值。比如,销售额突然出现极大或极小的异常值。
重复性:检查数据中是否存在重复的记录,这可能会导致数据分析的错误。
数据格式:确保数据的格式符合预定的规范,例如日期格式、数字格式等。
数据来源:监控数据的来源是否可靠,数据采集过程是否稳定,有无数据丢失或错误采集的情况。
数据关联:验证不同数据源或数据表之间的关联是否正确,关联的数据是否匹配。
业务规则遵循:检查数据是否符合特定的业务规则和逻辑,例如订单状态的流转是否符合业务流程
-
数据的整合和集成能力:(数据集成)
数仓模型需要集成来自不同数据源的数据,确保数据集成的效率、稳定性和准确性 -
数据的可访问性和易用性:(数据分析,数据支持)
模型需要易于访问和使用,支持快速响应业务需求。模型的复用度、规范度和稳定性也是评估的重要方面 -
可扩展性:(业务变化)
数仓模型需要能够适应数据量和业务需求的变化。 -
性能:
高性能的数据仓库能够在最短的时间内处理大量的数据请求和复杂的查询。 -
成本效益:
数仓模型的建设需要考虑到成本效益,即在建设成本和使用效益之间的平衡