LLMs:大模型核心技术—大语言模型的涉及四大技术领域(TL/USL/PT+Fine/Seq2Seq)、十大核心组件之详细攻略
目录
4.4、预训练技术三个阶段:静态→动态→动态+Fine-tune
(2)、Seq2Seq→Encoder-Decoder的概述
NLP/CV:Seq2Seq→Encoder-Decoder→Seq2Seq with Attention算法的简介、案例应用之详细攻略
DL之Transformer:Transformer的简介(优缺点/架构详解,基于Transformer的系列架构对比分析)、使用方法(NLP领域/CV领域)、案例应用之详细攻略
LLMs涉及技术领域的简介
1、多任务学习
多任务学习是一种同时学习多个相关任务的方法。通过共享模型参数和知识,可以减少训练时间和计算资源的需求。在自然语言处理领域,多任务学习可以帮助模型同时学习文本生成、摘要、问答等多种任务。