LLMs:大模型核心技术—大语言模型的涉及四大技术领域(TL/USL/PT+Fine/Seq2Seq)、十大核心组件之详细攻略

本文详述了大语言模型(LLMs)的核心技术,包括多任务学习、迁移学习、无监督学习和预训练+微调范式,以及CoVe、Seq2Seq和Transformer等算法。此外,还探讨了LLMs的十大核心组件,如语料库、词向量表示、预训练任务和Transformer架构等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LLMs:大模型核心技术—大语言模型的涉及四大技术领域(TL/USL/PT+Fine/Seq2Seq)、十大核心组件之详细攻略

目录

LLMs涉及技术领域的简介

1、多任务学习

2、迁移学习:特征提取、微调

3、无监督学习技术

4、预训练+微调范式

4.1、预训练技术的概述:很好的通用性+降低花费和时间成本

4.2、预训练和微调的区别

4.3、预训练+微调方法的发展

4.4、预训练技术三个阶段:静态→动态→动态+Fine-tune

(1)、静态预训练技术

(2)、动态预训练技术

(3)、新式动态预训练技术:+Fine-tune

5、核心算法

(1)、CoVe的概述

(2)、Seq2Seq→Encoder-Decoder的概述

NLP/CV:Seq2Seq→Encoder-Decoder→Seq2Seq with Attention算法的简介、案例应用之详细攻略

(3)、Transformer的概述

DL之Transformer:Transformer的简介(优缺点/架构详解,基于Transformer的系列架构对比分析)、使用方法(NLP领域/CV领域)、案例应用之详细攻略

6、MoE策略

LLMs的十大核心组件

1、语料库和数据收集

2、词向量表示

3、预训练任务

4、预训练目标

5、模型架构—Transformer 架构

6、多层堆叠和参数共享

7、预训练和微调

8、控制生成

9、长文本处理

10、大规模预训练和计算资源


LLMs涉及技术领域的简介

1、多任务学习

多任务学习是一种同时学习多个相关任务的方法。通过共享模型参数和知识,可以减少训练时间和计算资源的需求。在自然语言处理领域,多任务学习可以帮助模型同时学习文本生成、摘要、问答等多种任务。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值