PTM:大模型加速方法或框架(预训练阶段/推理阶段)的简介、常用框架(Megatron-LM/Colossal-AI/DeepSpeed等,FasterTransformer/FastLLM/vLLM/TurboTransformers等)、案例应用之详细攻略
导读:不同训练框架实现参数高效微调算法的效率会存在很大差异:比如使用Huggingface Transformers、DeepSpeed和Alpa训练名为"OPT-30"的模型。相对于使用Alpa框架,使用Huggingface Transformers和DeepSpeed框架来训练OPT-30模型会带来更低的资源消耗。
目录
一、大模型预训练阶段—加速方法或框架(以分布式深度学习为核心)
DNN之LNN:训练大型神经网络的核心技术(数据并行+管道并行+张量并行+专家混合MoE+内存优化策略【CheckPoint/MP/Offloading/优化器内存优化/压缩技术)
AIGC:ColossalChat(基于LLM和RLHF技术的类似ChatGPT的聊天机器人)/ColossalAI的简介、安装、使用方法之详细攻略
T3、DeepSpeed的简介:主流用法, 比如Chinese-LLaMA-Alpaca-2、ChatGLM2、Baichuan2
AI:DeepSpeed Chat(一款帮用户训练自己模型的工具且简单/低成本/快 RLHF 训练类ChatGPT高质量大模型)的简介、安装、使用方法之详细攻略
LLMs:Chinese-LLaMA-Alpaca-2(基于deepspeed框架)的简介、安装、案例实战应用之详细攻略
DeepSpeed中的参数说明:数据相关、模型相关、训练相关
LLMs之Baichuan 2:Baichuan 2的简介、安装、使用方法之详细攻略
T3、FastLLM:基于C++,速度明显优于Pytorch
持续更新中……