
tensorflow
黎明静悄悄啊
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Broadcasting
这是一个维度张量的手段,对某个维度重复N次,没有重复操作。 写起来更加简介,内存的节省。 默认从右到左,从小维度开始。 不是1的情况无法复制。 如下:与tile做对比,tile占用的内存空间更大, ...原创 2020-08-23 09:27:36 · 194 阅读 · 0 评论 -
维度变化
1原创 2020-08-22 21:40:54 · 362 阅读 · 0 评论 -
索引与切片
如何对tensor的数据进行读取,且就是数据的索引与切片。最开始是对index进行索引,但是这个方法不方便。 给定每个维度的索引 方法比较繁琐 可读性不强 numpy中的读取方法 在这里插入图片描述 可读性有所提升 ,layers], 但是当遇到图片的存储时候,比如一个64张图片 224*224的RGB图片[64,224,224,3] list就会显得力不从心,这时候我们需要np numpy.array 很方便的把一个大型数据存储起来 进行运算,很方便。但是他有一个致命的缺点就是就是他无法进行GPU的计算。我们甚至可以理解tensorflow的数据类型基本和np.array相同,只不过计原创 2020-08-14 16:12:04 · 504 阅读 · 0 评论 -
一个简单的神经网络实现
如下 一个简单的神经网络实现,梯度下降法 import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import numpy as np import matplotlib.pyplot as plt #使用numpy生成200个随机点 x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis] noise=np.random.normal(0,0.02,x_data.shape) y_data=np.squar原创 2020-08-03 22:21:48 · 164 阅读 · 0 评论