深度学习中容易忘记的小细节

本文详细介绍了深度学习中两种重要的张量操作:Concat和Add。Concat用于张量拼接,它会增加张量的维度,如2626256和2626512拼接得到2626768。而Add则是张量直接相加,如104104128和104104128相加结果保持不变。此外,还提到了卷积和池化作为降采样方法,以及反卷积用于升采样。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Concat:张量拼接,会扩充两个张量的维度,
在这里插入图片描述
例如2626256和2626512两个张量拼接,结果是2626768。

2、add:张量相加,张量直接相加,不会扩充维度。
在这里插入图片描述
例如104104128和104104128相加,结果还是104104128。add和cfg文件中的shortcut功能一样。ResNet就是add.
3、降采样有卷积、池化,升采样有反卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值