NIZK零知识证明-Groth10-Short Pairing-based Non-interactive Zero-Knowledge Arguments(四)

点个关注吧谢谢!

前序文章见:

六、Product Argument 乘积证明
给定三个承诺,三个承诺之间满足 ∀ i ∈ [ n ] , u i = a i b i \forall i\in[n],u_i=a_ib_i i[n],ui=aibi,我们需要给出证据argument ( π , π ^ , π ˙ \pi,\hat{\pi},\dot{\pi} π,π^,π˙),这些证据是关于承诺值并且要证明 a 1 b 1 = u 1 , . . . , a n b n = u n a_1b_1=u_1,...,a_nb_n=u_n a1b1=u1,...,anbn=un
在这里插入图片描述首先考虑一个例子:
c = ∏ i ∈ [ n ] g i a i , d = ∏ j ∈ [ n ] g j ( n + 1 ) b j c=\prod_{i\in[n]}g_i^{a_i},d=\prod_{j\in[n]}g_{j(n+1)}^{b_j} c=i[n]giai,d=j[n]gj(n+1)bj,并且 a 1 b 1 = . . . = a n b n = 0 a_1b_1=...=a_nb_n=0 a1b1=...=anbn=0

c c c对应的指数为 ∑ i ∈ [ n ] a i x i \sum_{i\in[n]}a_ix^i i[n]aixi; d d d对应的指数为 ∑ j ∈ [ n ] b j x j ( n + 1 ) \sum_{j\in[n]}b_jx^{j(n+1)} j[n]bjxj(n+1)。把指数乘起来:

在这里插入图片描述如果 a 1 b 1 = . . . = a n b n = 0 a_1b_1=...=a_nb_n=0 a1b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

密码猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值