点个关注吧谢谢!
六、Product Argument 乘积证明
给定三个承诺,三个承诺之间满足 ∀ i ∈ [ n ] , u i = a i b i \forall i\in[n],u_i=a_ib_i ∀i∈[n],ui=aibi,我们需要给出证据argument ( π , π ^ , π ˙ \pi,\hat{\pi},\dot{\pi} π,π^,π˙),这些证据是关于承诺值并且要证明 a 1 b 1 = u 1 , . . . , a n b n = u n a_1b_1=u_1,...,a_nb_n=u_n a1b1=u1,...,anbn=un
首先考虑一个例子:
c = ∏ i ∈ [ n ] g i a i , d = ∏ j ∈ [ n ] g j ( n + 1 ) b j c=\prod_{i\in[n]}g_i^{a_i},d=\prod_{j\in[n]}g_{j(n+1)}^{b_j} c=∏i∈[n]giai,d=∏j∈[n]gj(n+1)bj,并且 a 1 b 1 = . . . = a n b n = 0 a_1b_1=...=a_nb_n=0 a1b1=...=anbn=0
c c c对应的指数为 ∑ i ∈ [ n ] a i x i \sum_{i\in[n]}a_ix^i ∑i∈[n]aixi; d d d对应的指数为 ∑ j ∈ [ n ] b j x j ( n + 1 ) \sum_{j\in[n]}b_jx^{j(n+1)} ∑j∈[n]bjxj(n+1)。把指数乘起来:
如果 a 1 b 1 = . . . = a n b n = 0 a_1b_1=...=a_nb_n=0 a1b