LLM大模型微调(lora原理)

一、微调方法介绍

1.1 Lora原理

  ‌通过低秩矩阵来降低模型训练的参数量,有点‘给我一个支点,就可以撬动地球’的感觉,其中矩阵的秩(rank)就有点像这个‘支点’的意思,大致原理如下:
在这里插入图片描述
  ‌LoRA 的核心思想是:在不改变原始模型权重的情况下,通过引入低秩矩阵的增量来进行微调。也就是说,LoRA 不直接更新原模型的参数,而是为其特定的层添加额外的可训练参数,从而实现对模型的适应调整。一方面知识对部分层进行微调,另一方面还对需要更新的矩阵层ΔW进行了分解,进一步减少了参数量和计算量。
(1)原论文中的lora原理图,左边蓝色部分是你使用的LLM,模型中的参数是不同的矩阵,比如Qwen2.5-1.5B的模型,就是所有参数量(所有矩阵大小相加)为15亿。
(2)上图中我们简化为一个矩阵W,大小为in_shape,out_shape,可想而知,in_shapeout_shape是巨大的,如果像以往正常的微调,需要付出巨大的算力资源,以及大量的数据,如果数据量小的话,不足以微调其中的模型具体参数。
(3)lora引入低秩矩阵的想法和矩阵的积:
在这里插入图片描述
(4)lora引入两个低秩矩阵A和B,A
B的大小为LLM参数矩阵W的大小即可实现“撬动地球”的想法,矩阵的秩为rank,如下如
在这里插入图片描述
(5)所以使用lora方法对大模型进行微调时,训练过程中冻结原LLM模型权重,只对外部的AB两个权重进行学习微调,这

### LLM 微调方法与实践 大型语言模型(LLM)的微调是将预训练模型在特定数据集上进一步训练的过程,目的是提升模型在特定任务或领域中的性能。微调的核心在于将通用模型转化为专用模型,以更好地满足实际应用的需求。以下将详细介绍LLM微调的主要方法与实践策略。 #### 有监督微调(Supervised Fine-tuning, SFT) 有监督微调是最常见的微调方式,适用于已有标注数据的任务。该方法通过在特定任务的数据集上继续训练预训练模型,使其适应新任务的需求。通常,SFT 会在模型的最后几层进行参数更新,而保留底层参数不变,以保持模型的通用语言理解能力。[^3] 例如,对于文本分类任务,可以使用带有标签的文本数据进行微调: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments # 加载预训练模型和分词器 model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # 准备数据集 def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # 定义训练参数 training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) # 定义Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], ) # 开始训练 trainer.train() ``` #### 参数高效微调(Parameter-Efficient Fine-tuning, PEFT) 参数高效微调旨在仅调整模型的一小部分参数,从而减少计算资源和内存消耗。常见的PEFT方法包括LoRA(Low-Rank Adaptation)、Adapter Tuning 和 Prefix Tuning 等。[^1] - **LoRA(Low-Rank Adaptation)**:通过在权重矩阵中引入低秩矩阵来调整模型,显著降低了训练成本。 - **Adapter Tuning**:在Transformer层之间插入小型神经网络模块,仅训练这些模块而不更新原始模型参数。 - **Prefix Tuning**:在输入序列前添加可学习的prefix向量,控制模型生成特定任务的输出。 #### 检索增强生成(Retrieval-Augmented Generation, RAG) 检索增强生成是一种结合检索和生成的方法,适用于需要外部知识支持的任务。RAG 通过从外部知识库中检索相关信息,并将其作为上下文输入给生成模型,从而提升模型的准确性和相关性。[^3] #### 微调最佳实践 1. **数据准备**:确保数据集的高质量和代表性,避免数据偏差。 2. **模型选择**:根据任务需求选择合适的预训练模型,如BERT、RoBERTa、T5等。 3. **学习率调整**:使用学习率调度器(如线性预热+余弦衰减)以提高训练稳定性。 4. **早停机制**:监控验证集性能,及时停止训练以防止过拟合。 5. **模型评估**:使用多种指标(如准确率、F1值、BLEU等)评估模型性能。 #### 垂直行业中的LLM微调 在垂直行业中,LLM 微调需要结合行业特点进行定制化处理。例如,在金融领域,可以微调模型以识别金融术语和法规;在医疗领域,可训练模型理解医学文献和病历数据。[^2] ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值