面试题06. 从尾到头打印链表
输入一个链表的头节点,从尾到头反过来返回每个节点的值(用数组返回)。
示例 1:
输入:head = [1,3,2]
输出:[2,3,1]
限制:
0 <= 链表长度 <= 10000
最终返回的是vector数组,那么首先想到vector的reverse操作:
class Solution {
public:
vector<int> reversePrint(ListNode* head) {
ListNode *cur=head;
vector<int> v;
while(cur!=NULL)
{
v.push_back(cur->val);
cur=cur->next;
}
reverse(v.begin(),v.end());
return v;
}
};
解法二:可以利用栈的先进后出的性质,得到反转的数组
class Solution {
public:
vector<int> reversePrint(ListNode* head) {
ListNode *cur=head;
stack<int> s;
while(cur!=NULL)
{
s.push(cur->val);
cur=cur->next;
}
vector<int> v;
while(!s.empty())
{
v.push_back(s.top());
s.pop();
}
return v;
}
};
面试题07. 重建二叉树
输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
限制:
0 <= 节点个数 <= 5000
递归得到左右子树的前序、中序遍历结果,直到为空
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if (preorder.size() == 0 || inorder.size() == 0) {
return NULL;
}
TreeNode* treeNode = new TreeNode(preorder[0]);
int mid = distance(begin(inorder), find(inorder.begin(), inorder.end(), preorder[0]));
vector<int> left_pre(preorder.begin() + 1, preorder.begin() + mid + 1);
vector<int> right_pre(preorder.begin() + mid + 1, preorder.end());
vector<int> left_in(inorder.begin(), inorder.begin() + mid);
vector<int> right_in(inorder.begin() + mid + 1, inorder.end());
treeNode->left = buildTree(left_pre, left_in);
treeNode->right = buildTree(right_pre, right_in);
return treeNode;
}
};
面试题09. 用两个栈实现队列
用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )
示例 1:
输入:
[“CQueue”,“appendTail”,“deleteHead”,“deleteHead”]
[[],[3],[],[]]
输出:[null,null,3,-1]
示例 2:
输入:
[“CQueue”,“deleteHead”,“appendTail”,“appendTail”,“deleteHead”,“deleteHead”]
[[],[],[5],[2],[],[]]
输出:[null,-1,null,null,5,2]
class CQueue {
public:
CQueue() {
}
void appendTail(int value) {
s1.push(value);
}
int deleteHead() {
if(s1.empty())
return -1;
while(!s1.empty())
{
s2.push(s1.top());
s1.pop();
}
int n=s2.top();
s2.pop();
while(!s2.empty())
{
s1.push(s2.top());
s2.pop();
}
return n;
}
private:
stack<int> s1;
stack<int> s2;
};
/**
* Your CQueue object will be instantiated and called as such:
* CQueue* obj = new CQueue();
* obj->appendTail(value);
* int param_2 = obj->deleteHead();
*/
面试题10- I. 斐波那契数列
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:1
示例 2:
输入:n = 5
输出:5
class Solution {
public:
int fib(int n) {
if(n<=1)
return n;
int f[n+1];
f[0]=0;
f[1]=1;
for(int i=2;i<=n;i++)
{
f[i]=(f[i-1]+f[i-2])%1000000007;
}
return f[n];
}
};
面试题10- II. 青蛙跳台阶问题
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
class Solution {
public:
int numWays(int n) {
if(n<=1)
return 1;
int f[n+1];
f[0]=1;
f[1]=1;
for(int i=2;i<=n;i++)
{
f[i]=(f[i-1]+f[i-2])%1000000007;
}
return f[n];
}
};