Pandas常用数据结构

Pandas基础:Series与DataFrame详解
本文介绍了Pandas中的核心数据结构Series和DataFrame。Series是类似于列表的对象,由数据和索引组成,可通过列表或字典创建。DataFrame是表格型数据结构,由多个Series组成,支持多种操作,如获取列数据、增加或删除列、数据查看等。

一、Series类型

在Pandas中,有两个基本的数据类型,使得在处理数据的时候变得非常高效,分别是Series和DataFrame,其中DataFrame是由多个Series组成的,因此要先学好Series,才能对DataFrame的使用更加得心应手。

Series是一种类似于列表的对象,由一列数据以及一列与之对应的索引组成。如下图所示。
Series.png

1. 创建Series对象:

在实际开发中,可能需要经常创建Series对象,而创建Series对象有多重方式,下面进行讲解。

1.1. 通过列表或ndarray数组创建:
import pandas as pd

persons = ['张三','李四','王五']
series = pd.Series(persons)

print(series)
print(type(series))

上述代码可以看到输出以上代码输出为:

0    张三
1    李四
2    王五
dtype: object

<class 'pandas.core.series.Series'>
1.2. 通过字典创建:
persons = {"张三":18, "李四": 25, "王五": 19}
series = pd.Series(persons)

print(series)
print(type(series))

上述代码的输出结果为:

张三    18
李四    25
王五    19
dtype: int64

<class 'pandas.core.series.Series'>

2. Series对象相关操作:

2.1. 获取数据和索引:

通过series.indexseries.values能分别获取到Series对象的索引和值。示例代码如下:

persons = ['张三','李四','王五']
series = pd.Series(persons)

p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值