【论文阅读】ShuffleNet——ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

本文介绍了ShuffleNet,一种专为移动设备设计的高效卷积神经网络。ShuffleNet利用分组卷积和通道重排技术,在保持准确性的同时降低计算成本。与Xception和ResNeXt等模型相比,ShuffleNet能以更少的计算资源编码更多信息。文章详细阐述了网络架构,包括基本模块、瓶颈块和整体网络结构,并提供了PyTorch实现。实验结果显示ShuffleNet在相同计算预算下表现优越。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文阅读

感谢P导
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

文章中提出了一个非常有效的Architecture——ShuffleNet,主要使用两种操作,分组PW卷积和通道重排,在保证准确率的情况下降低了计算代价在这里插入图片描述
之前提出的模型,Xception和ResNeXt因为其中大量的Pw操作使得计算代价挺高,无法实现小型模型,因此,我们使用分组Pw COnv代替Pw Conv,为了减少分组Pw Conv带来的副作用(近亲繁殖?),提出使用通道重排(见论文 Fig 1)让信息在不同的组中的channel进行流通。因此ShuffleNet与其他网络相比,在相同的计算代价下,可以支持更多的Channel也就可以encode更多的信息
在这里插入图片描述在这里插入图片描述
分组卷积第一次在AlexNet中提出,之后在ResNeXt中证明了他的又相信,Dw Conv在Xception中提出,Mobile结合pw和Dw使用depthwise separation,shufflenet用一种新方式来使用Conv
在这里插入图片描述
通道重排:首先将feature map转换成广义矩阵,之后进行transpose操作,重新flatten成feature map
在这里插入图片描述
关于ShuffleNet的unit:residual block中33 Conv换成DwConv为(a),之后将其中的11 Conv换成 GConv并接一个Channel shuffle就是(b),stride为2的时候为©,在shortcut connection上,使用的是全局平均池化,而不是resnet中的Conv进行操作,在之后的addition操作中,使用的是concatenation而不是Add。
在这里插入图片描述
在这里插入图片描述
网络架构,在每个stage中的第一个block为stride=2,bottle neck中的channel为out feature map中的channel的1/4,添加两个超参数,g来控制分组的个数,来实现sparsity connection,factor s来控制每层的channel个数(类似于mobilenet中的α)
在这里插入图片描述
之后文章做了对比消融(Ablation Study)实验,分别在Gpw Conv和 channel shuffle上做了对比实验,也与其他的架构做了实验对比(在相同的计算代价下)

代码实现

model

构建1x1 3x3的基本模块
1x1要注意是否需要relu,3x3的要注意是否stride=2
之后搭建bottleneck模块,然后堆叠成shufflenet网络

import torch.nn.functional as F
import torch
import torch.nn as nn
from torch import Tensor

# from model import channel_shuffle ,可以直接調用該函數
def channel_shuffle(x: Tensor, groups: int) -> Tensor:

    batch_size, num_channels, height, width = x.size()
    channels_per_group = num_channels // groups
    # reshape
    # [batch_size, num_channels, height, width] -> [batch_size, groups, channels_per_group, height, width]
    x = x.view(batch_size, groups, channels_per_group, height, width)

    x = torch.transpose(x, 1, 2).contiguous()
    # flatten
    x = x.view(batch_size, -1, height, width)
    return x


class conv1x1(nn.Module):
    def __init__(self, in_channel, out_channel, group, relu=True, bias=False) -> None:
        super(conv1x1, self).__init__()
        self.relu = relu
        self.group = group
        if self.relu:
            self.conv1x1 = nn.Sequential(
                nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                          kernel_size=1, stride=1, groups=self.group, bias=bias),
                nn.BatchNorm2d(out_channel),
                nn.ReLU(inplace=True)
            )
        else:
            self.conv1x1 = nn.Sequential(
                nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                          kernel_size=1, stride=1, groups=self.group, bias=bias),
                nn.BatchNorm2d(out_channel)
            )
    def forward(self, x):
        if self.relu:
            out = self.conv1x1(x)
            # pytorch自带的channel_shuffle函数
            return channel_shuffle(out, self.group)
        return self.conv1x1(x)

class conv3x3(nn.Module):
    # 3x3卷积中的输入通道和输出通道一致,且使用dw卷积,也就是group=channel,都不使用Relu,stride有两种取值,2只在每个stage的第一个block

    def __init__(self, in_channel, stride, bias=False):
        super(conv3x3, self).__init__()
        self.conv3x3 = nn.Sequential(
            nn.Conv2d(in_channels=in_channel, out_channels=in_channel,
                      kernel_size=3, stride=stride,padding=1, groups=in_channel, bias=bias),
                      nn.BatchNorm2d(in_channel)
        )
    def forward(self,x):
        return self.conv3x3(x)
    

class bottleneck(nn.Module):
    def __init__(self,in_channel,out_channel,stride,groups):
        super(bottleneck,self).__init__()
        self.stride=stride

        #中间层的通道数为输出通道数的1/4
        channel=int(out_channel/4)

        # 论文中table1 的描述中写,在stage2的第一个pw层不使用group卷积
        g=1 if in_channel==24 else groups
        self.layer1=conv1x1(in_channel,channel,group=g,relu=True,bias=False)
        self.layer2=conv3x3(channel,stride=stride,bias=False)
        #因为第一个是进行add,所以为了保持通道数相同,需要进行-self.inchannel
        if self.stride==2:
            self.layer3=conv1x1(channel,out_channel-in_channel,group=groups,relu=False,bias=False)
        else:            
            self.layer3=conv1x1(channel,out_channel,group=groups,relu=False,bias=False)

        self.shortcut=nn.Sequential(
                nn.AvgPool2d(3,stride=2,padding=1)
            )
    def forward(self,x):
        out=self.layer1(x)
        out=self.layer2(out)
        out=self.layer3(out)
        if self.stride==2:
            x=self.shortcut(x)
        out=F.relu(torch.cat([out,x],1)) if self.stride==2 else F.relu(out+x)
        return out

class ShuffleNet(nn.Module):
    def __init__(self,stages_repeats,stages_out_channels,groups,num_classes=1000):
        super(ShuffleNet,self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 24, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(24),
            nn.ReLU(inplace=True)
        )        
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.in_channel=24
        self.layer1 = self._make_layer(stages_out_channels[0], stages_repeats[0], groups)
        self.layer2 = self._make_layer(stages_out_channels[1], stages_repeats[1], groups)
        self.layer3 = self._make_layer(stages_out_channels[2], stages_repeats[2], groups)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(stages_out_channels[2], num_classes)
    def _make_layer(self, out_channel, num_blocks, groups):
        layers = []
        #每个stage中的输出大小和通道是一样的,只有第一个block的stride不同,只设置这个就管
        for i in range(num_blocks):
            if i == 0:
                
                layers.append(bottleneck(self.in_channel,
                                         out_channel,
                                         stride=2, groups=groups))
            else:
                layers.append(bottleneck(self.in_channel,
                                         out_channel,
                                         stride=1, groups=groups))
            self.in_channel = out_channel
        return nn.Sequential(*layers)
    def forward(self,x):
        out=self.conv1(x)
        out=self.maxpool(out)
        out=self.layer1(out)
        out=self.layer2(out)
        out=self.layer3(out)
        out=self.avgpool(out)
        out=out.view(out.size(0),-1)
        out=self.fc(out)

        return out

def ShuffleNetG2(num_classes=1000):
    model = ShuffleNet(stages_repeats=[4, 8, 4],
                         stages_out_channels=[200, 400, 800],
                         groups=2,
                         num_classes=num_classes)
    return model

def ShuffleNetG3(num_classes=1000):
    model = ShuffleNet(stages_repeats=[4, 8, 4],
                         stages_out_channels=[240, 480,960],
                         groups=3,
                         num_classes=num_classes)
    return model
def ShuffleNetG4(num_classes=1000):
    model = ShuffleNet(stages_repeats=[4, 8, 4],
                         stages_out_channels=[272,544,1088],
                         groups=4,
                         num_classes=num_classes)
    return model
train
import os
import sys
import json

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm

from model_v1 import ShuffleNetG4


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    batch_size = 16
    epochs = 20

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}


    data_root = os.path.abspath(os.path.join(os.getcwd(), "../dataset"))  # get data root path
    
    image_path = os.path.join(data_root, "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])    
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    
    val_num = len(validate_dataset)
    train_num = len(train_dataset)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))
    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)   
    

    # create model
    net = ShuffleNetG4(num_classes=5).to(device)
 	# 加载现有模型这块没有写
    
    # define loss function
    loss_function = nn.CrossEntropyLoss()
    # construct an optimizer
    optimizer = optim.Adam(net.parameters(), lr=0.0001)


    best_acc = 0.0
    save_path = './ShuffleNetV1.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader)
        for data in train_bar:
            images, labels = data
            optimizer.zero_grad()
            logits = net(images.to(device))
            loss = loss_function(logits, labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                # loss = loss_function(outputs, test_labels)
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

                val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
                                                           epochs)
        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)
    print('Finished Training')
if __name__ == '__main__':
    main()
predict
**import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model_v1 import ShuffleNetG4

def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    img_path = "../tulip.jpg"
    print(img_path)
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model
    model = ShuffleNetG4(num_classes=5).to(device)
    # load model weights
    model_weight_path = "./ShuffleNetV1.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()

if __name__ == '__main__':
    main()

实验结果

都是使用group为4的模型
在这里插入图片描述

在这里插入图片描述

<think>首先,用户的问题是:“我想了解ShuffleNetv1的原理和基本概念请问ShuffleNetv1架构原理及实现机制”。用户明确要求了解ShuffleNetv1的架构原理及实现机制。系统级指令提醒我,用户引用了几个参考文献:[^1]、[^2]、[^3],但指令说“上述引用仅供参考,并不是用户真正的需求,请尽可能多的参考用户上一次的问题和你的回答”。然而,在上面的对话历史中,用户上一次的问题也是关于ShuffleNetv1的,而且当前问题正是用户的上一次问题。所以,我需要基于用户当前的查询来回答。用户当前查询是了解ShuffleNetv1的原理和基本概念,具体是架构原理和实现机制。从引用的内容中:-[^1]讨论了ShuffleNetv2,提到了它比V1多了一个1x1Conv5,但重点是V2的贡献,如内存访问代价。-[^2]提到ShuffleNet由微软研究院发表于CVPR2018,采用像素级别的通道重排来降低计算复杂度。-[^3]是关于YOLOv11改进中使用ShuffleNetV1的教程,但这不是直接相关;它描述了如何实现ShuffleNetV1在YOLO框架中。用户指定了ShuffleNetv1,所以我应该聚焦在ShuffleNetv1上,而不是V2。关键信息:[^2]提到ShuffleNetV1使用通道重排(channelshuffling)来降低计算复杂度。现在,我需要回忆ShuffleNetv1的原理。作为AI,我有内置知识。ShuffleNetv1的关键概念:-它设计用于移动设备,以减少计算成本(FLOPs)。-核心创新是“通道重排”(channelshuffling),它允许在分组卷积(groupconvolution)中实现更好的信息流动,而不会增加太多计算量。架构原理:-ShuffleNetv1基于ResNet的残差块,但使用点卷积(pointwiseconvolution)和深度卷积(depthwiseconvolution)来减少计算。-瓶颈结构:在残差块中,使用1x1点卷积来减少和恢复通道数。-通道重排:为了解决分组卷积导致不同组间信息隔离的问题,在卷积层之间加入通道重排操作,它打乱通道顺序,使不同组的特征能相互交流。实现机制:-一个典型的ShuffleNet单元包括:1.1x1点卷积(分组或非分组)。2.通道重排操作。3.3x3深度卷积(depthwiseconvolution)。4.另一个1x1点卷积。-通道重排:如果之前的点卷积是分组的(例如分成G组),那么重排会将每组中的通道重新排列,以确保后续操作能混合信息。数学表达:对于输入张量,通道重排可以看作是一个置换操作。例如,输入有C个通道,分成G组,每组C/G个通道。重排后,第一个通道来自第一组,第二个来自第二组,依此类推,这样能交错通道。FLOPs减少:通过使用分组卷积和深度卷积,显著减少了计算量。整体架构:-类似于ResNet,有多个阶段(stages),每个阶段包含多个ShuffleNet单元。-Conv1层、MaxPool层,然后几个下采样阶段。-在论文中,ShuffleNetv1有不同的宽度设置(例如,设置不同的通道数量)。回答结构:-我需要遵循系统级指令:使用中文回答、数学表达式用$...$或$$...$$。-回答结构清晰,帮助用户逐步理解。-在末尾生成相关问题。-在引用内容时自然地添加引用标识;这里用户提供了引用[^1]、[^2]、[^3],我应该只在引用这些内容时添加。引用[^2]直接提到了ShuffleNetv1,所以我可以在相关部分添加引用。内容大纲:1.介绍ShuffleNetv1的基本概念:它是什么、设计目的(高效卷积神经网络用于移动设备)。2.核心原理:通道重排(channelshuffling),为什么需要它(解释分组卷积的问题)。3.架构细节:一个ShuffleNet单元的组成。-使用数学表达式描述。-例如:假设输入有C通道,点卷积操作等。4.整体网络结构:阶段划分、参数设置。5.实现机制:如何在实际中实现通道重排(如使用通道置换)。6.简要提到优点:低计算复杂度(FLOPs)、参数量少。在生成相关问题:-基于ShuffleNetv1,例如关于性能比较、改进版本如V2、实际应用等。最后,确保语言自然。</think> ### ShuffleNet v1架构原理及实现机制 ShuffleNet v1是一种专为移动设备设计的高效卷积神经网络模型,由微软研究院在CVPR 2018论文《ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices》中提出[^2]。它的核心目标是在保证准确性的前提下,显著降低模型的计算复杂度(FLOPs)和参数量(Params),使其适合部署在资源受限的设备上(如智能手机)。以下我将从原理和实现机制两方面逐步解释。 #### 1. **核心原理:通道重排(Channel Shuffling)** ShuffleNet v1的核心创新是引入了**通道重排**机制,这解决了传统分组卷积(Group Convolution)中的信息隔离问题。在轻量级网络中,分组卷积常用于减少计算量(例如,MobileNet中使用了深度可分离卷积),但将通道分成互不相交的组会导致每组特征图之间缺乏信息交换,降低了模型的表达能力。通道重排通过在分组卷积层之间“打乱”通道顺序,使不同组间的特征能相互融合,从而提升性能。 数学上,通道重排可以表示为对输入张量的通道维度进行置换操作: - 输入张量 $\mathbf{X} \in \mathbb{R}^{H \times W \times C}$,其中 $H$ 是高度,$W$ 是宽度,$C$ 是通道数。 - 假设将通道分成 $G$ 组(每组有 $C/G$ 个通道),重排操作 $\mathcal{S}$ 将每组中的通道重新排序。例如,重排后的输出通道索引 $j$ 对应原始索引: \[ j = \left\lfloor \frac{k}{G} \right\rfloor + (k \mod G) \times \frac{C}{G} \] 其中 $k$ 是原始通道索引。这确保了每组通道在重排后均匀分布,实现了跨组信息融合。 这种设计的好处是: - **低计算成本**:通道重排本身几乎不增加计算量(仅需简单的内存重排操作),但大幅提升了特征表示能力。 - **高效性**:通过结合分组卷积和通道重排,ShuffleNet v1在保持准确性的同时,将FLOPs降低50%以上(相比ResNet)。 #### 2. **网络架构设计** ShuffleNet v1的整体架构借鉴了ResNet的残差结构,但进行了高度优化。网络由多个阶段组成,每个阶段包含多个ShuffleNet单元,核心组件是**ShuffleNet单元**(基本构建块)。以下是架构细节: - **整体结构**: - **Conv1 层**:标准7x7卷积,用于初步特征提取。 - **MaxPool 层**:下采样操作。 - **Stage 2~5**:多个下采样阶段,每个阶段包含堆叠的ShuffleNet单元,通道数逐渐增加。 - **Global Pool 和 FC 层**:全局平均池化(Global Pool)和全连接层(FC)用于分类输出。 架构参数可根据需求调整,例如通过“宽度因子”(如0.5x或1.0x)控制通道数大小,以适应不同设备性能[^2]。 - **ShuffleNet单元结构(核心实现块)**: - 每个单元是一个残差块,输入 $\mathbf{X}$ 经过两个分支处理:主分支处理特征,捷径分支(shortcut)用于身份映射(identity mapping)或降维。 - 主分支包含以下步骤: 1. **1x1点卷积(分组操作)**:用于降维或升维,减少通道数以减少计算量。公式:$\text{Conv}_{1\times1}(\mathbf{X}) \in \mathbb{R}^{H \times W \times C'}$,其中 $C' < C$。 2. **通道重排**:在点卷积后应用通道重排 $\mathcal{S}$,使分组特征相互融合。 3. **3x3深度卷积(Depthwise Convolution)**:轻量级卷积操作,逐通道计算特征图(每个通道独立卷积),计算复杂度低。公式:$\text{DepthwiseConv}_{3\times3}(\mathbf{S}(\mathbf{X}))$。 4. **另一个1x1点卷积**:恢复通道数或进一步处理特征。 - 捷径分支:如果输入和输出尺寸不匹配,使用1x1卷积调整通道数。 - 输出通过元素级加法融合主分支和捷径分支:$\mathbf{Y} = \text{主分支输出} + \text{捷径分支输出}$。 $$ \mathbf{Y} = \text{Conv}_{1\times1} \left( \text{DepthwiseConv}_{3\times3} \left( \mathcal{S} \left( \text{Conv}_{1\times1}(\mathbf{X}) \right) \right) \right) + \text{Shortcut}(\mathbf{X}) $$ 其中,$\mathcal{S}$ 是通道重排操作。该设计大幅减少了FLOPs(例如,3x3卷积使用深度卷积,计算量仅为标准卷积的1/9)。 #### 3. **实现机制** 在实际中实现ShuffleNet v1时,关键是通过代码高效执行通道重排和分组操作: - **通道重排的实现**:在深度学习框架(如PyTorch或TensorFlow)中,使用通道置换函数实现。例如,在PyTorch中,可以通过`reshape` 和 `permute` 操作实现: ```python def channel_shuffle(x, groups): batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # 重排操作:先分组,再转置 x = x.view(batch_size, groups, channels_per_group, height, width) x = x.permute(0, 2, 1, 3, 4) # 转置组和通道 x = x.contiguous().view(batch_size, num_channels, height, width) return x ``` 这确保了在推理时不增加额外延迟。 - **整体网络构建**:ShuffleNet v1通常采用模块化设计,每个“stage”由多个重复单元组成。实现时需注意: - 在降采样阶段(如从Stage 2到Stage 3),使用步长为2的卷积进行空间下采样。 - 参数优化:通过调整分组数 $G$(论文中常用 $G=3$ 或 $G=4$)和宽度因子平衡精度和效率。 - 与原始ResNet相比,ShuffleNet v1减少了点卷积的通道数(例如,使用“瓶颈”结构),整体参数量可降低至1M以下。 ShuffleNet v1在ImageNet数据集上实现了高效性能(例如,Top-1准确率~67%,FLOPs仅140M),成为移动端CV任务的基石模型[^2]。后续版本如ShuffleNet v2进一步优化了GPU访存效率[^1]。 #### **相关问题**
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值