以泰坦尼克号为例构建第一个预测模型

本文通过泰坦尼克号数据集介绍机器学习模型的构建过程,包括数据准备、训练集与测试集拆分、模型训练、评估与预测。讲解了模型训练的数据格式、数据集拆分的重要性及模型评估的多种指标,如准确率、召回率和F1 Score。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果把机器学习的最终成果比做为做一道菜的话,那么数 据准备和处理,就相当于买食材并 挑选、洗清、处理食材的过程。

一 导包

#逻辑回归算法
from sklearn.linear_model import LogisticRegression 
#随机分割数据集
from sklearn.model_selection import train_test_split
#输出模型评估报告 
from sklearn.metrics import classification_report
#相当于把“泰坦尼克号数据特征工程完整流程.ipynb ”文件中的代码

%run 泰坦尼克号数据特征工程完整流程.ipynb 

在这里插入图片描述

TrainData.head()

在这里插入图片描述
训练集中一定要删除目标值,因为这个值是要训练得出的

#从训练数据集中,拆分出特征变量
trainData_X = TrainData.drop(['Survived'], axis = 1)
trainData_X.head()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值