有一根长度为 n
个单位的木棍,棍上从 0
到 n
标记了若干位置。例如,长度为 6 的棍子可以标记如下:
给你一个整数数组 cuts
,其中 cuts[i]
表示你需要将棍子切开的位置。
你可以按顺序完成切割,也可以根据需要更改切割的顺序。
每次切割的成本都是当前要切割的棍子的长度,切棍子的总成本是历次切割成本的总和。对棍子进行切割将会把一根木棍分成两根较小的木棍(这两根木棍的长度和就是切割前木棍的长度)。请参阅第一个示例以获得更直观的解释。
返回切棍子的 最小总成本 。
这个题目我一眼哈夫曼树,然后就开始错误的一发不可收拾。。。
这个题目的正解应该是动态规划,区间dp。但这个题的数据范围太水了,直接dfs递归暴力求解就可以过,完全够不上困难。
dfs的方法就是以整段为递归入口,枚举每个可切割点尝试切割,递归求解。长度为1时是递归出口。只不过记得记忆化一下,不然会超时。
class Solution {
public:
int minCost(int n, vector<int>& cuts) {
cuts.push_back(n);cuts.push_back(0);
sort(cuts.begin(), cuts.end());
block = cuts;
int len=cuts.size();
vector<vector<int> > ma(len, vector<int>(len));
return dfs(0, len-1, ma);
}
int dfs(int x, int y, vector<vector<int> > &ma)
{
if (x+1 ==y) return 0;
int ans=ma[x][y];
if (ans) return ans;
ans = INT_MAX;
for (int z=x+1; z<y; ++z)
{
ans = min(ans, dfs(x,z,ma)+dfs(z,y,ma));
}
ans += block[y]-block[x];
ma[x][y] = ans;
return ans;
}
vector<int> block;
};
因为记忆化了,所以时间复杂度应该是O(m^3),m是cuts的长度。空间复杂度O(m*m)?
也可以把递归改成递推,就变成了dp了。这里贴官方题解的代码。
class Solution {
public:
int minCost(int n, vector<int>& cuts) {
int m = cuts.size();
sort(cuts.begin(), cuts.end());
cuts.insert(cuts.begin(), 0);
cuts.push_back(n);
vector<vector<int>> f(m + 2, vector<int>(m + 2));
for (int i = m; i >= 1; --i) {
for (int j = i; j <= m; ++j) {
f[i][j] = (i == j ? 0 : INT_MAX);
for (int k = i; k <= j; ++k) {
f[i][j] = min(f[i][j], f[i][k - 1] + f[k + 1][j]);
}
f[i][j] += cuts[j + 1] - cuts[i - 1];
}
}
return f[1][m];
}
};
至于我的贪心思想,就是参考哈夫曼树,每次选择花费最小的两块合并,其实就是切分的逆过程。当然,肯定错了。我给个错误的例子
n=36
cuts=[13,17,15,18,3,22,27,6,35,7,11,28,26,20,4,5,21,10,8]
贪心解法是165,dp的答案是150