Apollo入门课程[2]——高精度地图

本文介绍了高精度地图(HDMap)在自动驾驶领域的关键作用,包括其精确的三维道路表征、丰富的语义信息、厘米级的定位精度以及与车辆定位、感知和规划的关系。讨论了HDMap如何降低感知难度、减少计算需求并确保车辆安全。同时,概述了ApolloHDMap的内容、优点及构建流程,强调了数据采集、处理、对象检测、手动验证和地图发布的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HD Map简介

地图:

  • 定位
  • 预先规划

高精度地图包含大量的驾驶辅助信息,最重要的信息是道路网的精确三维表征,如交叉路口布局和坐标位置。还有很多语义信息,如交通灯上不同颜色的含义、左转车道开始的位置。
高精度地图最重要的特征之一是精度。手机的导航地图只能到米,而高精度地图需要能够达到厘米级别。

地图与定位、感知与规划的关系

有了HD Map,就需要在Map上自定位。这意味着需要明白我们在地图上的位置。

  • 首先,车辆寻找地标,可以使用从各类传感器收集到的数据,如摄像机图像数据,以及激光雷达收集的三维点云数据来查找地标。
  • 车辆将收集到的数据与高精度地图上的已知地标进行比较,需要预处理、坐标转换和数据融合。
    • 预处理消除不准确或质量差的数据。
    • 坐标转换将来自不同视角的数据转换成统一的坐标系。
    • 数据融合可将来自各种车辆和传感器的数据合并。

HD Map有益于感知:

  • 可以将传感器未检测到的物体的位置提供给软件栈的其余部分,帮助汽车做决策
  • 可帮助传感器缩小检测范围

感兴趣区域(ROI):可帮助我们提高检测精确度和速度,节约计算资源

有益于规划:

  • 可帮助车辆找到适合的行车空间
  • 帮助规划期确定不同的路线选择
  • 帮助预测软件预测道路上其他车辆在将来的位置

Apollo HD Map

Apollo HD Map包含道路定义、交叉路口、交通信号、车道规则以及用于汽车导航的其他元素。采用了Open DRIVE格式(行业制图标准)并进行改进,使其更适合无人驾驶车。

优点
降低感知难度
减少计算需求
通过提供详细信息确保车辆安全

需要不断的更新地图。
高精度地图的构建:

  1. 数据采集:一项庞大的密集型任务
  2. 数据处理:如何对收集到的数据进行整理、分类和清洗以获得没有任何语义信息或注释的初始地图模板。
  3. 对象检测:使用人工智能来检测静态对象,并对其进行分类
  4. 手动验证:确保自动地图创建过程正确并及时发现问题
  5. 地图发布
    构建
    创建和更新过程中Apollo使用了众包,向公众发布其数据采集工具,以便可以使普通人通过手机设备,汽车智能设备等参与地图更新和维护。
    众包
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值