
机器学习
生如蜉蝣_
莫向外求
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
神经网络分类效果评价——多元分类交叉熵
描述 针对项目过程中遇到的对于神经网络分类效果的评价–损失函数categorical_crossentropy的解读。 1.多元分类交叉熵 其中,types是分类总数,以五元分类来说,types=5; yitag是某个分类的标签值,是一个二值,即只能为0或1,例如,对于五元分类,类别就是用一个五元组表示—— [1,0,0,0,0] [0,1,0,0,0] [0,0,1,0,0] [0,0,0,1,0] [0,0,0,0,1] 那么yitag的值就是当前分类位置上的0或1值; yi_pre_prob是在so原创 2021-01-22 10:04:02 · 2060 阅读 · 3 评论 -
机器学习——有监督学习部分知识点梳理
最近在做机器学习方向的课题,为了从基础开始做起,用半个月学习了一下李航的《统计学习方法》和周志华的《机器学习》,对机器学习这个领域有了初步的认识。 由于课题主要是基于有监督的学习,所以主要学习了两本书的前半部分,以下是一个简单的梳理。 至于其他部分,随着课题推进,自己的认知加深之后再来分享吧! ...原创 2020-11-16 10:42:54 · 223 阅读 · 0 评论