[Numpy函数]numpy.sum()

本文详细解析了numpy库中sum函数的axis参数作用,通过实例演示了当axis取不同值时,如何影响多维数组的求和操作。并解释了keepdims参数的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

众所周知,sum不传参的时候,是所有元素的总和。这里就不说了。
假设我生成一个numpy数组a,如下
在这里插入图片描述这是一个拥有两维的数组,每一维又拥有三个数组,这个数组里面拥有四个元素。如果我们要将这个a数组中的第一个元素1定位出来,则我们会输入a[0][0][0]。好,这个axis的取值就是这个精确定位某个元素需要经过多少数组的长度,在这里是3,所以axis的取值有0,1,2。如果一个数组精确到某个元素需要a[n0][n1][n2][…][n],则axis的取值就是n。定位到这里,axis的参数的取值就解释完成了。

2 理解参数axis取值对sum结果的影响:

前面说了axis的取值(以数组a为例),axis=0,1,2。在这里,精确定位到某个元素可以用a[n0][n1][n2]表示。n0的取值是0,1(数组两维),代表第一个索引;n1的取值是0,1,2(每一维数组拥有3个子数组),代表第二个索引;n2的取值是0,1,2,3(每个子数组有4个元素),代表第三个索引,这几个取值在后面会用到。

2.1 axis = 0的时候:
axis=0,对应n0已经确定下来,即n0取值定为0,1。所以sum每个元素的求和公式是sum = a[0][n1][n2]+a[1][n1][n2]。接下来确定sum的行数和列数,n1的取值是0,1,2,为3个数,代表行数,n2的取值是0,1,2,3,为4个数,代表列数,所以sum为3*4的数组。
如何求sum的各个元素呢,sum = a[0][n1][n2]+a[1][n1][n2]这个公式又如何理解呢?如下。我们可以做一个表格:注意颜色

在这里插入图片描述所以sum(axis=0)的值是 [ [2, 2, 5, 2], [3, 3, 5, 1], [4, 4, 5, 2]]。
验证一下, 正确!
在这里插入图片描述2.2 axis = 1的时候:
axis=1,对应n1已经确定下来,即n1取值定为0,1,2。所以sum每个元素的求和公式是sum =a[n0][0][n2]+a[n0][1][n2]+a[n0][2][n2]。接下来确定sum的行数和列数,n0的取值是0,1,为2个数,代表行数,n2的取值是0,1,2,3,为4个数,代表列数,所以sum为24的数组。
如何求sum的各个元素呢,sum = a[n0][0][n2]+a[n0][1][n2]+a[n0][2][n2]这个公式又如何理解呢?我们又做一个表格,颜色不标注了
在这里插入图片描述所以sum(axis=1)的值是 [ [4, 7, 10, 4], [5, 2, 5, 1]]. 验证如下,正确。
在这里插入图片描述
2.3 axis = 2的时候:
axis=2,对应n2已经确定下来,即n2取值定为0,1,2, 3。所以sum每个元素的求和公式是sum =a[n0][n1][0]+a[n0][n1][1]+a[n0][n1][2]+a[n0][n1][3]。接下来确定sum的行数和列数,n0的取值是0,1,为2个数,代表行数,n1的取值是0,1,2,为3个数,代表列数,所以sum为2
3的数组。
如何求sum的各个元素呢,sum = a[n0][n1][0]+a[n0][n1][1]+a[n0][n1][2]+a[n0][n1][3]这个公式又如何理解呢?我们又做一个表格,颜色不标注了
在这里插入图片描述
所以sum(axis=2)的值是 [ [8, 7, 10], [3, 5, 5]]. 验证如下,正确。
在这里插入图片描述 keepdims 的含义

keepdims主要用于保持矩阵的二维特性
在这里插入图片描述输出
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值